vSphere PowerCLI Administration Guide

VMware vSphere PowerCLI 4.1

EN-000367-00

vmware

vSphere PowerCLI Administration Guide

You can find the most up-to-date technical documentation on the VMware Web site at:
http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

Copyright © 2010 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and
intellectual property laws. VMware products are covered by one or more patents listed at
http://www.vmware.com/go/patents.

VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks
and names mentioned herein may be trademarks of their respective companies.

VMware, Inc.

3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

2 VMware, Inc.

http://www.vmware.com/support/
http://www.vmware.com/support
mailto:docfeedback@vmware.com
http://www.vmware.com/go/patents
http://www.vmware.com/go/patents

Contents

About This Book 5

1 Getting Started with vSphere PowerCLI 7
Introduction to the vSphere PowerCLI Cmdlets 7
Command-Line Syntax 7
Launching vSphere PowerCLI 8
List All vSphere PowerCLI Cmdlets 8
Displaying Help for Any Cmdlet 8
Connecting to a Server 8

2 Basic Cmdlet Usage 11
PowerShell Cmdlet Usage 11
Pipelines 11
Wildcards 11
Common Parameters 12
vSphere PowerCLI Specific Cmdlet Usage 12
Specifying Objects 12
Managing Default Servers 12
Running PowerCLI Cmdlets Asynchronously 13
Using Custom Scripts to Extend the Operating System Support for PowerCLI Cmdlets 14
Examples of Basic Usage of the vSphere PowerCLI Cmdlets 14
Connecting to a Server 14
Basic Virtual Machine Operations 14
Basic Virtual Machine Host Operations 15

3 Advanced Cmdlet Usage 17
Examples of Advanced Cmdlet Usage 17
Using the vSphere PowerCLI Cmdlets 17
Create vSphere Objects 17
Use Virtual Machine Templates 18
Create Virtual Machines Using an XML Specification File 19
Create Snapshots 19
Update the Resource Configuration Settings of a Virtual Machine 20
List Various Virtual Machine Hosts and Displaying Their Properties 20
Change the Host Advanced Configuration Settings 21
Migrate a Virtual Machine 21
Use Virtual Machine Host Profiles 21
Manage Statistics and Statistics Intervals 22
Configure the NIC Teaming Policy of a Virtual Switch 23
Manage Virtual Appliances 23
Manage Guest Networks 24
Work with Host Storages and iSCSI HBA Devices 25
Manage PCI and SCSI Passthough Devices 25
Creating Custom Properties for vSphere Objects 26
Apply Customization Specifications to Virtual Machines 26

VMware, Inc.

vSphere PowerCLI Administration Guide

Web Service Access Cmdlets 27
Filter vSphere Objects 28
Populate a View Object 28
Update the State of a Server-Side Object 28
Mixed Usage of vSphere PowerCLI and Web Service Access Cmdlets 29
The Inventory Provider 30
Basic Functions of the Inventory Provider 30
The Datastore Provider 31
Basic functions of the Datastore Provider 31

4 VMware, Inc.

About This Book

The vSphere PowerCLI Administration Guide provides information about using the VMware vSphere PowerCLI
cmdlets (pronounced “commandlets”) set that ships with vSphere PowerCLI for managing, monitoring,
automating, and handling life-cycle operations for VMware vSphere components —virtual machines,
datacenters, storage, networks, and so on.

Intended Audience

This book is intended for anyone who needs to use vSphere PowerCLI. The information in this book is written
for administrators who are familiar with virtual machine technology and Windows PowerShell. There are two
categories of users for vSphere PowerCLI:

B Basic administrators can use PowerShell commands included in vSphere PowerCLI to manage their
VMware infrastructure from the command line.

B Advanced administrators can develop PowerShell scripts that may be reused by other administrators or
integrated into other applications.

NOTE All vSphere PowerCLI users are expected to be familiar with the details of VMware vSphere
administration and the Windows operating system. Solution developers are expected to be familiar with the
.NET infrastructure and the VIM object model as well.

VMware Technical Publications Glossary

VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For definitions
of terms as they are used in VMware technical documentation go to http://www.vmware.com/support/pubs.

Document Feedback

VMware welcomes your suggestions for improving our documentation. If you have comments, send your
feedback to docfeedback@vmware.com.

Technical Support and Education Resources

The following sections describe the technical support resources available to you. To access the current version
of this book and other books, go to http://www.vmware.com/support/pubs.

Online and Telephone Support

To use online support to submit technical support requests, view your product and contract information, and
register your products, go to http://www.vmware.com/support.

Customers with appropriate support contracts should use telephone support for the fastest response on
priority 1 issues. Go to http://www.vmware.com/support/phone_support.html.

VMware, Inc. 5

http://www.vmware.com/support/pubs
http://www.vmware.com/support/pubs
http://www.vmware.com/support
http://www.vmware.com/support/phone_support.html
mailto:docfeedback@vmware.com

vSphere PowerCLI Administration Guide

Support Offerings

To find out how VMware support offerings can help meet your business needs, go to
http://www.vmware.com/support/services.

VMware Professional Services

VMware Education Services courses offer extensive hands-on labs, case study examples, and course materials
designed to be used as on-the-job reference tools. Courses are available onsite, in the classroom, and live
online. For onsite pilot programs and implementation best practices, VMware Consulting Services provides
offerings to help you assess, plan, build, and manage your virtual environment. To access information about
education classes, certification programs, and consulting services, go to http://www.vmware.com/services.

VMware, Inc.

http://www.vmware.com/support/services
http://www.vmware.com/services/

Getting Started with vSphere
PowerCLI

vSphere PowerCLI provides easy-to-use C# and PowerShell interface to VMware vSphere APIs. It ships with
a number of cmdlets that you can use to perform various administration tasks on VMware vSphere
components. This chapter explains how to get started using the vSphere PowerCLI cmdlets.

This chapter covers the following topics:
B “Introduction to the vSphere PowerCLI Cmdlets” on page 7

B “Launching vSphere PowerCLI” on page 8

Introduction to the vSphere PowerCLI Cmdlets

Microsoft PowerShell is both a command-line and scripting environment, designed for Windows. It leverages
the .NET object model and provides administrators with management and automation capabilities. Working
with PowerShell, like with any other console environment, is done by typing commands. In PowerShell
commands are called cmdlets, which term we will use throughout this guide.

vSphere PowerCLI 4.1 ships with more than 200 PowerShell-based cmdlets. The PowerCLI also includes 2
.NET cmdlets for use through PowerShell —the Web Service Access Cmdlets. For more information about the
.NET cmdlets, see “Web Service Access Cmdlets” on page 27.

vSphere PowerCLI cmdlets are created to answer the specific needs of the VMware vSphere administration
and management. All vSphere PowerCLI cmdlets are found in the
VMware.VimAutomation.ViCore.Cmdlets snapin.

Command-Line Syntax
vSphere PowerCLI command-line syntax is the same as generic PowerShell syntax.

PowerShell cmdlets use a consistent verb-noun structure, where the verb specifies the action and the noun
specifies the object to operate on. PowerShell cmdlets follow consistent naming patterns, which makes it easy
to figure out how to construct a command if you know the object you want to work with.

All command categories take parameters and arguments. A parameter starts with a hyphen and is used to
control the behavior of the command. An argument is a data value consumed by the command.

A simple PowerShell command looks like the following;:

command —parameterl —parameter2 argumentl -argument2

VMware, Inc. 7

vSphere PowerCLI Administration Guide

Launching vSphere PowerCLI

To launch vSphere PowerCLI from the Start menu, click Programs > VMware > VMware vSphere PowerCLI >
VMware vSphere PowerCLI.

The script configuration file Initialize-VIToolkitEnvironment.ps1isloaded automatically. This file is
located in the Scripts folder in the vSphere PowerCLI installation directory. Administrators can edit and
extend the script to define cmdlets aliases, configure the environment, or set vSphere PowerCLI start up
actions.

NOTE Instead of launching the vSphere PowerCLI console, administrators can also access the vSphere
PowerCLI snapin directly from other tools, like PowerShell Plus or PowerGU]I, by running:

Add-PSSnapin VMware.VimAutomation.Core

In this case, the Initialize-VIToolkitEnvironment.psl script configuration file is not started
automatically. To load it, type its name in the console window without specifying the path:

Initialize-VIToolkitEnvironment.psl

Loading the file provides access to vSphere PowerCLI cimdlets aliases, like Get-VC, Get-ESX, and to other
configuration settings.

List All vSphere PowerCLI Cmdlets

If you are new to vSphere PowerCLI, one thing you want to know is what cmdlets are available to you. To get
a list of all vSphere PowerCLI cmdlets, use the Get—Command cmdlet with the —~PSSnapin parameter in the
following way:

Get-Command —PSSnapin VMware.VimAutomation.Core

The vSphere PowerCLI cmdlets are listed in the console window as one long, scrolling topic. You can view
them a single page at a time by piping the results of the Get—-Command cmdlet to the more option in the
following way:

Get-Command —PSSnapin VMware.VimAutomation.Core | more

Displaying Help for Any Cmdlet

You can get help for a specific cmdlet by supplying the Get-Help command in the vSphere PowerCLI Console.
For example, for information on the Add-VMHost cmdlet, run the Get-Help command as follows:

Get-Help Add-VMHost

For more detailed information, add the —full parameter:

Get-Help Add-VMHost -full

Alternatively, you can use the help alias with any cmdlet:

help Add-VMHost

To view detailed help information page by page, pipe the help cmdlet to the more cmdlet:

help Add-VMHost —full | more

Connecting to a Server

To run specific vSphere PowerCLI cmdlets and perform administration or monitoring tasks, first establish a
connection to an ESX or a vCenter Server.

In the vSphere PowerCLI console window, type the following cmdlet:
Connect-VIServer -Server <Server_Address>

where <Server_Address> is the IP address or DNS name of the vCenter Server or ESX host. When prompted,
enter your user name and password to authenticate with the server.

8 VMware, Inc.

Chapter 1 Getting Started with vSphere PowerCLI

Another way is to put all information on the command line at once, using the Protocol, User, and Password
parameters. For example:

Connect-VIServer -Server 192.168.10.10 -Protocol http -User admin -Password pass
After a connection is established, you are ready to run the vSphere PowerCLI cmdlets.
For example, you can start a specific virtual machine using the following cmdlet:
Start-VM <virtual_machine_name>

For example, to run a virtual machine named MyVM, run:

Start-VM MyVM

VMware, Inc. 9

vSphere PowerCLI Administration Guide

10 VMware, Inc.

Basic Cmdlet Usage

This chapter explores the basics of the vSphere PowerCLI cmdlets usage.
The chapter discusses the following topics:
® “PowerShell Cmdlet Usage” on page 11

® “Examples of Basic Usage of the vSphere PowerCLI Cmdlets” on page 14

NOTE This chapter does not discuss PowerShell basics. You are expected to have knowledge of PowerShell
and its command-line and scripting conventions.

PowerShell Cmdlet Usage

In this section, some of the cmdlets syntax and usage basic concepts are described.

Pipelines

A pipeline is a series of commands separated by the pipe operator |. Each command in the pipeline receives
an object from the previous command, performs some operation on it, and then passes it along to the next
command in the pipeline. Objects are output from the pipeline as soon as they become available. You can type
a pipeline on a single line, or spread it across multiple lines. You can cycle backwards through command
history using the up arrow, so it is easier to repeat pipelines if you type them on a single line.

Wildcards

PowerShell has a number of pattern matching operators called wildcards, which work on strings. For example,
to display all files with a . txt extension, run:

dir *.txt
In this example, the asterisk * operator matches any combination of characters.

Wildcard patterns allow you to specify character ranges as well. For example, to display all files that start with
the letter S or T and have a . txt extension, run:

dir [st]*.txt

You can use the question mark ? wildcard to match any single character within a sequence of characters.
For example, to display all .txt files whose names consist of ‘string’ and one more character in the end, run:

dir string?.txt

All wildcard expressions can be used with the vSphere PowerCLI cmdlets.

VMware, Inc. 11

vSphere PowerCLI Administration Guide

Common Parameters

The Windows PowerShell engine implements a set of reserved parameter names, referred to as common
parameters. All PowerShell cmdlets, including the vSphere PowerCLI cmdlets, support them. Common
parameters are: Verbose, Debug, ErrorAction, ErrorVariable, OutVariable, and OutBuffer.
Respectively, the following aliases are reserved for these parameters: vb, db, ea, ev, ov, and ob.

PowerShell offers two risk mitigation parameters in PowerShell: WhatIf and Confirm. Whatif is used when
you want to see the effects of a command without running it. Confirm is used when a cmdlet performs an
operation that stops a program or service or deletes data.

For more details on the usage of common parameters, use the following command:

Get-Help about_CommonParameters

vSphere PowerCLI Specific Cmdlet Usage

12

This section explores some specific concepts of the vSphere PowerCLI cmdlets.

Specifying Objects

In vSphere PowerCLI, all parameters that take as arguments inventory objects (Cluster, Datacenter,
Folder, ResourcePool, Template, VirtualMachine, VMHost, VirtualSwitch), datastores,
0SCustomizationSpec objects, and VIServer objects can be specified by strings and wildcards. This
PowerCLI approach is called Object-by-Name selection (OBN). If a provided object name is not recognized, an
OBN failure occurs. In such cases, PowerCLI generates a non-terminating error and runs the cmdlet ignoring
the invalid name.

Example 2-1. An OBN Failure

Set-VM -VM “VM1”, “VM2”, “VM3” -Server $serverl, $server2 -MemoryMB 512

If the VM2 virtual machine does not exist on either of the specified servers, a non-terminating error is thrown
and the command is applied only on the VM1 and VM2 virtual machines.

For more details on OBN, use the following command:
help about_OBN

Instead of assigning an object name to a cmdlet parameter, users can pass the object through a pipeline or a
variable.

NOTE In vSphere PowerCLI, passing strings as pipeline input is not supported.

For example, the following three lines are interchangeable:

Remove-VM -VM "Win XP SP2"
Get-VM -Name "Win XP SP2" | Remove-VM

Remove-VM -VM (Get-VM —Name "Win XP SP2")

Managing Default Servers

vSphere PowerCLI cmdlets run on default vSphere servers, if no target servers can be determined from the
provided parameters.

When you connect to a vSphere server using Connect-VIServer, the server connection is stored in the
$DefaultVIServers array variable. This variable contains all connected servers for the current PowerCLI
session. To remove a server from the $DefaultVIServers variable, you can either use Disconnect-Server
to close all active connections to this server, or modify the value of $DefaultVIServers manually.

VMware, Inc.

Chapter 2 Basic Cmdlet Usage

vSphere PowerCLI allows you to work with a single default server instead of using multiple default servers.
In this case, the $DefaultVIServers variable always contains the last connected server, and its value is
updated every time you connect to a new server. Working with a single default server is deprecated and will
be removed in a following release.

To switch to a single default server mode

1 Run Get-PowerCLIConfiguration to view the actual PowerCLI configuration:
Get-PowerCLIConfiguration

2 Run Set-PowerCLIConfiguration to change the default server mode to Single:
Set—PowerCLIConfiguration -DefaultVIServerMode Single

A lot of PowerCLI cmdlets have a parameter named Server. The Server parameter allows you to run the
cmdlet on servers different from the default ones. This parameter takes both server names and VIServer
objects.

Running PowerCLI Cmdlets Asynchronously

By default, vSphere PowerCLI cmdlets return an output only after completion of the requested tasks. If you
want a cmdlet to return to the command line immediately, without waiting for the tasks to complete, you can
specify the RunAsync parameter. In this case, the cmdlet returns Task objects instead of its usual output.

The Status property of a returned Task object contains a snapshot of the task’s initial state. This state is not
automatically updated and has the values Error, Queued, Running, or Success. You can refresh a task state
by retrieving the task object with the Get-Task cmdlet. If you want to observe the progress of a running task
and wait for its completion before initiating other commands, use the Wait-Task cmdlet.

Example 2-2. Running Remove-VM With and Without the RunAsync Parameter

Remove-VM $vmList

The command returns with no output when all virtual machines stored in the $vmList variable are removed
(simultaneously or not).

Remove-VM $vmList —-RunAsync

The command returns immediately and the output consists of one or more Task objects.

In vSphere PowerCLI, the RunAsync parameter affects only the cmdlets” invocation and does not control
whether the initiated tasks run consecutively or in parallel. For example, the Remove-VM cmdlet might remove
the specified virtual machines simultaneously or consecutively depending on the vSphere PowerCLI internal
design. To make sure that tasks initiated by a cmdlet run consecutively, run the cmdlet in a loop, each time
applying it to a single object.

Example 2-3. Removing Virtual Machines Consecutively

foreach ($vm in $vmList)
{

Remove-VM $vml

3

VMware, Inc. 13

vSphere PowerCLI Administration Guide

Using Custom Scripts to Extend the Operating System Support for PowerCLI
Cmdlets

Some PowerCLI features support only Windows XP, Windows Server 2003, and Linux RedHat Enterprise 5.
To add support for other guest operating systems, you can use the scripts that are located in the Script folder
in the PowerCLI installation directory or add your own custom scripts. When adding new scripts, use the
following file naming guidelines:

B Scripts that extend the operating system support for Get-VMGuestNetworkInterface,
Set-VMGuestNetworkInterface, Get—VMGuestRoute, New-VMGuestRoute, Remove-VMGuestRoute,
and Set-VMGuestRoute must follow the file naming format <CmdletName>_<0S_Identifier>, where
OSIdentifiers> is the guest family or the guest ID as returned by Get-VMGuest, and <CmdletName> is
the cmdlet name written without a hyphen, for example GetVMGuestRoute.

B Scripts that extend the operating system support for the hard disk resizing functionality of Set-HardDisk
must follow the file naming format GuestDiskExpansion_<0S_Identifier>, where
<0S_Identifier> is the guest family or the guest ID (as returned by Get-VMGuest).

Examples of Basic Usage of the vSphere PowerCLI Cmdlets

14

This section provides some examples of basic vSphere PowerCLI cmdlets usage.

Connecting to a Server

The following cmdlet establishes a connection to a local server and prompts for user credentials, as they are
not passed as parameters:

Connect-VIServer -Server <server_address>
For example:

Connect-VIServer -Server esx3.example.com

NOTE If a proxy server is used for the connection, the administrator should verify that it is configured
properly, so that the connection is kept alive long enough not to break the long running vSphere PowerCLI
tasks. To remove a proxy, run the following command:

Set-PowerCLIConfiguration -ProxyPolicy NoProxy

In vSphere PowerCLI, you can have more than one connections to the same server. To disconnect from a server,
you must close all active connections to this server running the Disconnect-VIServer cmdlet.

Basic Virtual Machine Operations

The following scenario shows how to retrieve information of available virtual machines and their operation
system. It also demonstrates how to shut down a virtual machine guest operating system and to power off the
virtual machine using vSphere PowerCLI cmdlets.

To manage virtual machines
1 After establishing a connection to a server, list all virtual machines on the target system:
Get-WM

2 Save the name and the power state properties of the virtual machines in the ResourcePool resource pool
into a file named myVMProperties. txt:

$respool = Get-ResourcePool ResourcePool

Get-VM -Location $respool | Select-Object Name, PowerState > myVMProperties.txt
3 Start the VM virtual machine:

Get-VM VM | Start-VM

VMware, Inc.

Chapter 2 Basic Cmdlet Usage

Retrieve information of the guest OS of the VM virtual machine:
Get-VMGuest WM | fc

Shutdown the OS of the VM virtual machine:

Shutdown-VMGuest VM

Power off the VM virtual machine:

Stop-VM WM

Move the virtual machine VM from the Host01 host to the Host02 host:

Get-VM -Name VM -Location Host0l | Move-VM -Destination Host02

NOTE If the virtual machine you want to move across hosts is powered on, it must be located on a shared
storage registered as a datastore on both the original and the new host.

Basic Virtual Machine Host Operations

The following examples illustrate some basic operations with virtual machine hosts, like adding a host to a

vCenter Server, putting a host into maintenance mode, shutting down, and removing a host from the vCenter
Server.

To add a standalone host to the vCenter Server

1

List all hosts on the target VMware vSphere server that you have established a connection with:
Get-VMHost
Add the MyHost standalone host:

Add-VMHost —-Name MyHost -Location (Get-Datacenter Main) -User root -Password pass

To activate maintenance mode for a host

1

VMware, Inc.

Save the MyHost host object as a variable:

$myHost = Get-VMHost -Name MyHost

Retrieve the cluster to which MyHost belongs and save the cluster object as a variable:

$hostCluster = Get-Cluster -VMHost $myHost

Initialize a task that activates maintenance mode for the MyHos t host and save the task object as a variable:

$updateHostTask = Set-VMHost -VMHost $myHost -State "Maintenance" -RunAsync

NOTE If the hostis not automated or is partially automated and has powered on virtual machines running
on it, you must specify the RunAsync parameter and wait until all powered on virtual machines are
relocated or powered off before applying DRS recommendations.

Retrieve and apply the recommendations generated by DRS:

Get-DrsRecommendation —Cluster $hostCluster | where {$_.Reason —eq "Host is entering
maintenance mode"} | Apply-DrsRecommendation

Retreve the task output object and save it as a variable:

$myUpdatedHost = Wait-Task $updateHostTask

15

vSphere PowerCLI Administration Guide

16 VMware, Inc.

Advanced Cmdlet Usage

This chapter provides examples of advanced usage of the vSphere PowerCLI cmdlets.

The chapter discusses these topics:

“Examples of Advanced Cmdlet Usage” on page 17
“The Inventory Provider” on page 30

“The Datastore Provider” on page 31

Examples of Advanced Cmdlet Usage

This section contains examples of using the vSphere PowerCLI cmdlets, the Web Service Access cmdlets, the
datastore provider, and the inventory provider functionality for retrieving and managing VMware vSphere
objects.

Using the vSphere PowerCLI Cmdlets

The following examples illustrate how to use advanced functionality provided by the vSphere PowerCLI
cmdlets:

Create vSphere Objects

The following scenario illustrates common methods for creating folders, datacenters, clusters, resource pools,

and virtual machines using vSphere PowerCLI cmdlets.

To create inventory objects

1

VMware, Inc

Establish a connection to a vCenter Server system:

Connect-VIServer -Server <Server_Address>
For example:

Connect-VIServer -Server 192.168.10.10

When prompted, provide the administrator's user name and password to authenticate access on the server.

Get the inventory root folder and create a new folder called MainFolder in it:
$mainFolder = Get-Folder -NoRecursion | New-Folder —Name MainFolder

Note that the information about the location of the new folder is specified through the pipeline.
Create a new datacenter called MyDC in the MainFolder folder:

New-Datacenter -Location $mainFolder —Name MyDC

17

vSphere PowerCLI Administration Guide

18

Create a folder called MyFolder®1 under MyDC:

Get-Datacenter MyDC | New-Folder -Name MyFolder0l

$myFolder®l = Get-Folder —-Name MyFolderQl

NOTE Search in PowerShell is not case-sensitive.

Create a new cluster MyCluster01 in the MuFolder01 folder:

New-Cluster -Location $MyFolder@l —Name MyCluster0l -DrsEnabled -DrsAutomationLevel
FullyAutomated

NoOTE DRS (Distributed Resource Scheduler) is a facility that allows automatic allocation of cluster resources.

Add a host in the cluster using the Add—VMHost command, which prompts you for credentials:
$myHost01 = Add-VMHost —-Name 10.23.112.345 -Location (Get-Cluster MyClusterQl)

The parentheses interpolate the object returned by the Get—Cluster command into Location parameter.
Create a resource pool in the cluster's root resource pool:

$myClusterRootRP = Get-ResourcePool -Location (Get-Cluster MyCluster@l) —-Name Resources

New-ResourcePool -Location $clusterRootRP —Name MyRPO1 -CpuExpandableReservation $true
—CpuReservationMhz 500 -CpuSharesLevel high -MemExpandableReservation $true -MemReservationMB
500 -MemSharesLevel high

Create a virtual machine synchronously:

New-VM —Name MyVM1 -VMHost $myHostO1l -ResourcePool (Get-ResourcePool MyRPO1) -DiskMB 4000
—MemoryMB 256

Create a virtual machine asynchronously:

$vmCreationTask = New-VM —-Name MyVM2 -VMHost $myHost@1 —-ResourcePool (Get-ResourcePool
MyRPO1) -DiskMB 4000 —-MemoryMB 256 —RunAsync

The —-RunAsync parameter specifies that the command runs asynchronously. This means that in contrast
to a synchronous operation, you do not have to wait for the process to complete before supplying the next
command in the command line.

Use Virtual Machine Templates

A virtual machine template is a reusable image created from a virtual machine. The template, as a derivative

of the source virtual machine, includes virtual hardware components, an installed guest operating system, and

software applications.

This procedure illustrates how to create virtual machines templates and convert them to virtual machines. The
example uses the VMware vSphere objects created in the previous example.

To create and use virtual machine templates

1

Add an additional 2GB hard disk to the MyVM2 virtual machine:
$vmCreationTask | Wait-Task | New-HardDisk -CapacityKB (2 * 1024 * 1024)
Create a template from the MyVM1 virtual machine:

New-Template -VM MyVM1 —Name MyVMlTemplate -Location (Get-Datacenter MyDC)

NOTE Note that on VirtualCenter 2.0 and VirtualCenter 2.5, the virtual machine must be powered off
before creating a template based on it. On VirtualCenter 2.5 Update 2, the virtual machine can be powered
off or powered on, but not suspended.

Convert this template for a use by a virtual machine named MyVM3:

Get-Template MyVM1Template | Set-Template -ToVM —Name MyVM3

VMware, Inc.

Chapter 3 Advanced Cmdlet Usage

Create a template from the MyVM2 virtual machine:

New-Template -VM MyVM2 —Name MyVM2Template -Location (Get-Datacenter MyDC)
Convert this template to a virtual machine named MyVM4:

Get-Template MyVM2Template | Set-Template -ToVM —Name MyVM4

Move the virtual machines into the MyRPO1 resource pool:

Get-VM MyVM? | Move-VM -Destination (Get-ResourcePool MyRPO1)

Use ? as a wildcard to match just one symbol. The command returns all virtual machines whose names
start with MyVM and have one more symbol at the end. In this example, MyVM1, MyVM2, MyVM3, and MyVM4
are retrieved and moved into the MyRPO1 resource pool.

Start the virtual machines in the MyRPO1 resource pool:

Get-ResourcePool MyRPO1 | Get-VM | Start-VM

Create Virtual Machines Using an XML Specification File

This example illustrates how to create virtual machines in accordance with the specification provided in an
XML file.

Consider a myVM. xml file, with the following content:

<CreateVM>

<VM>
<Name>MyVM1</Name>
<HDDCapacity>10000</HDDCapacity>
</VM>
<VM>
<Name>MyVM2</Name>
<HDDCapacity>10000</HDDCapacity>
</VM>

</CreateVM>

1

Read the content of the myVM. xm1 file:
[xml]$s = Get-Content myVM.xml
Create the virtual machines:

$s.CreateVM.VM | where { New-VM —-VMHost 192.168.10.11 —-Name $_.Name -Disk MB $_.HDDCapacity}

Create Snapshots

A snapshot captures the memory, disk, and settings state of a virtual machine at a particular moment. When
you revert to a snapshot, you return all these items to the state they were in at the time you took that snapshot.

The following procedure illustrates taking a snapshot of virtual machines and then reverting the virtual
machines to it.

To create and use snapshots

1

VMware, Inc

Take a snapshot of all virtual machines in the MyRPO1 resource pool:
Get-ResourcePool MyRPO1 | Get-VM | New-Snapshot -Name InitialSnapshot

The —Location parameter takes arguments of the VIContainer type, on which Cluster, Datacenter,
Folder, ResourcePool, and VMHost object types are based. Therefore, the —Location parameter can use
arguments of all these types.

Revert all virtual machines in the MyRPO1 resource pool to the InitialSnapshot snapshot:

$VMs = Get-VM -Location (Get-ResourcePool MyRPO1)
foreach($vm in $wMs) { Set-VM -VM $vm -Snapshot (Get-Snapshot -VM $vm —Name
InitialSnapshot) }

19

vSphere PowerCLI Administration Guide

Update the Resource Configuration Settings of a Virtual Machine

The following procedure illustrates how to retrieve and modify the resource configuration properties of a
virtual machine.

To update the resource configuration of a virtual machine

1

Establish a connection to an ESXi host by the Connect-VIServer command:
Connect-VIServer -Server 10.23.114.123

Retrieve the resource configuration for the MyVM1 virtual machine.:
Get-VMResourceConfiguration -VM (Get-VM MyVM1)

Display the disk share of the MyVM1 virtual machine:

Get-VMResourceConfiguration -VM (Get-VM MyVM1) | Format—Custom —Property
DiskResourceConfiguration

Change the memory share of the MyVM1 virtual machine to low:

Get-VM MyVM1 | Get-VMResourceConfiguration | Set-VMResourceConfiguration -MemSharesLevel low
Update the CPU share of the MyVM1 virtual machine to high:

Get-VM MyVM1 | Get-VMResourceConfiguration | Set-VMResourceConfiguration —-CpuSharesLevel high
Change the disk share of the MyVM1 virtual machine to 100:

$myVM1 = Get-VM MyVM1
$myVMldisk = Get-HardDisk $myvM1

Get-VMResourceConfiguration $myVM1 | Set-VMResourceConfiguration -Disk $myVMldisk
-DiskSharesLevel custom —NumDiskShares 100

List Various Virtual Machine Hosts and Displaying Their Properties

This scenario illustrates how to list all available virtual machine hosts in a datacenter and display their properties.

To list the available hosts and display their properties

1

20

List all virtual machine hosts that are part of the datacenter named MyDC:

Get-Datacenter MyDC | Get-VMHost | Format-Custom

Display the properties of the first virtual machine host in the datacenter:

Get-Datacenter MyDC | Get-VMHost | Select-Object -First 1 | Get-View | Format-Custom

Displays the Name and the OverallStatus properties of the virtual machine hosts in the MyDC datacenter:

Get-Datacenter MyDC | Get-VMHost | Get-View | Format-Table —Property Name, OverallStatus
—-AutoSize

Display all virtual machine hosts and their properties, and save the results to a file:
Get-Datacenter “MyDC” | Get-VMHost | Get-View | Format—Custom | Out-File -FilePath hosts.txt

List the virtual machine hosts that are in maintenance mode and can be configured for VMotion
operations:

Get-VMHost -State maintenance | Get-View | Where-Object -FilterScript { $_.capability -ne
$null -and $_.capability.vmotionSupported }

VMware, Inc.

Chapter 3 Advanced Cmdlet Usage

Change the Host Advanced Configuration Settings

This procedure shows how to migrate virtual machines from one host to another.

To change the host advanced configuration settings
1 Change the migration time-out for the MyESXHost1 virtual machine host:.

Get-VMHost MyESXHostl | Set-VmHostAdvancedConfiguration -Name Migrate.NetTimeout —Value
([system.int32] 10)

2 Enable making checksum of the virtual machines memory during the migration:

Get-VMHost MyESXHostl | Set-VmHostAdvancedConfiguration -Name Migrate.MemChksum -Value
([system.int32] 1)

3 Get the MyESXHost1 virtual machine host migration settings:
$migrationSettings = Get-VMHost MyESXHostl | Get-VmHostAdvancedConfiguration -Name Migrate.*
4 Apply the migration settings to MyESXHost2:

Set-VmHostAdvancedConfiguration —-VMHost (Get-VMHost MyESXHost2) -Hashtable $migrationSettings

Migrate a Virtual Machine

The following procedures illustrate how to migrate a virtual machine between hosts and datastores using the
VMotion and Storage VMotion features.

To move a virtual machine using VMotion

1 Establish a connection to a server using the Connect-VIServer command:
Connect-VIServer -Server 10.23.111.235

2 Retrieve the MyVM1 virtual machine and move it to the host named ESXHost2:

Get-VM MyVM1 | Move-VM -Destination (Get-VMHost ESXHost2)

NOTE VMotion allows to move a virtual machine that is powered on from one host to another. The virtual
machine must be stored on a datastore shared by the current and destination hosts, and the VMotion interfaces
on the two hosts must be properly configured.

To move a virtual machine using Storage VMotion

1 Establish a connection to a server using the Connect-VIServer command:
Connect-VIServer -Server 10.23.111.235

2 Retrieve the MyVM1 virtual machine and move it to the datastore named MyDatastore2:

Get-VM VM1 | Move-VM -Datastore (Get-Datastore MyDatastore2)

NOTE Storage VMotion allows to move a virtual machine that is powered on from one datastore to another.
The host on which the virtual machine is running must have access both to the datastore where the virtual
machine is located and to the destination datastore.

Use Virtual Machine Host Profiles

This scenario illustrates how to get use of the virtual machine host profiles.

To create and apply host profiles
1 Establish a connection to a server using the Connect-VIServer command:
Connect-VIServer -Server 10.32.110.123
The server must be vCenter 4.0 or later. Earlier releases do not support host profiles.
2 Get the virtual machine host named MyHost01 and store it in the $h variable:

$h = Get-VMHost MyHost01

VMware, Inc. 21

vSphere PowerCLI Administration Guide

22

10

11

12

Create a profile based on the MyHost01 virtual machine host:

New-VMHostProfile —-Name MyHostProfile®l -Description "This is my test profile based on
MyHost01." —ReferenceHost $h

Get the newly created virtual machine host profile:
$hp01l = (Get-VMHostProfile —-Name MyHostProfile01)[0]
Change the description of the MyHostProfile01 host profile:

Set-VMHostProfile -Profile $hp0l -Description "This is my old test host profile based on
MyHost01."

Get the MyHost02 virtual machine host, on which to apply the testProfile virtual machine host profile:
$myHost02 = Get-VMHost MyHost02

Associate the MyHost02 virtual machine host with the MyHosProfile01 host profile:

Set-VMHost -VMHost $myHost02 -Profile $hp0l

Test if the MyHost02 host is compliant with the MyHostProfile@1l profile:
Test-VMHostProfileCompliance -VMHost $myHost02

The output of this command contains the host’s incompliant settings, if any.

Apply the profile to the MyHost02 host:

$neededVariables = Apply-VMHostProfile -Entity $myHost02 -Profile $hp0@l -Confirm:$false

The $neededVariables variable contains the names of all required variables and their default or current
values, as returned by the server. Otherwise, the $neededVariables variable contains the name of the
host on which the profile has been applied.

Export the MyHostProfile0@1 profile to a file:

Export-VMHostProfile -FilePath export.prf —-Profile $hp0@1 —Force
Import a new profile from the export.prf file:

Import-VMHostProfile -FilePath export.prf —Name MyImportedProfile®l
Delete the created profiles:

Get-VMHostProfile —Name "MyHostProfile®l","MyImportedProfile®l" | Remove-VMHostProfile
—Confirm:$false

Manage Statistics and Statistics Intervals

This example scenario shows how to use the vSphere PowerCLI cmdlets to retrieve and manage inventory
objects’ statistics.

To create and manage statistics and statistics intervals

1

Establish a connection to a server by using the Connect-VIServer command:
Connect-VIServer -Server 10.32.110.123

The server must have VirtualCenter 2.0 or higher installed. Earlier releases do not support creating
statistics intervals.

Create a new statistics interval named minute:
New-StatsInterval -Name minute -SamplingPeriodSecs 60 -StorageTimeSecs 600
Create another statistics interval named past hour:

New-StatsInterval -Name "past hour" -SamplingPeriodSecs (60 * 60) -StorageTimeSecs 50000

NOTE The sampling period of a new statistics interval must be a multiple of the previous interval sampling
period.

VMware, Inc.

Chapter 3 Advanced Cmdlet Usage

Create a third statistics interval named past day:

New-StatsInterval -Name "past day" -SamplingPeriodSecs (60 * 60 * 12) -StorageTimeSecs
500000

Extend the storage time of the past day statistics interval:
Set-StatsInterval -Interval "past day" -StorageTimeSecs 700000
List the available memory metric types for the MyCluster cluster:

$cluster = Get-Cluster MyClusterl

$statTypes = Get-StatType -Entity $cluster -Interval "past day" —Name mem.*
List the cluster statistics collected for the day:

Get-Stat -Entity $cluster -Start ([System.DateTime]::Now.AddDays(-1)) -Finish
([System.DateTime] : :Now) -Stat $statTypes

Configure the NIC Teaming Policy of a Virtual Switch

This example scenario illustrates how to change the load balancing and failover settings of a virtual switch and

determine the unused NICs.

To configure the NIC teaming policy of a virtual switch

1

Retrieve the physical NIC objects on the host network and store them in a variable:
$pn = Get-VMHost 10.23.123.128 | Get-VMHostNetwork | select —Property physicalnic
Store the physical NIC objects you want to make unused in separate variables:

$pn5 = $pn.PhysicalNic[2]

$pn6 = $pn.PhysicalNic[3]

$pn7 = $pn.PhysicalNic[0]
Retrieve the NIC teaming policy of the VSwitch01 virtual switch:

$policy = Get-VirtualSwitch -VMHost (Get-VMHost 10.23.123.128) -Name VSwitchOl |
Get-NicTeamingPolicy

Change the policy of the switch to indicate that the $pn5, $pn6, and $pn7 network adapters are unused:
$policy | Set-NicTeamingPolicy -MakeNicUnused $pn5, $pn6, $pn7
Modify the settings of the virtual switch NIC teaming policy:

$policy | Set-NicTeamingPolicy -BeaconInterval 3 -LoadBalancingPolicy 3
-NetworkFailoverDetectionPolicy 1 -NotifySwitches $false -FailbackEnabled $false

Manage Virtual Appliances

These examples illustrate how to create and manage virtual appliances using the PowerCLI cmdlets.

To create and start a virtual appliance

1

VMware, Inc.

Create a new virtual appliance named MyVApp on the specified host:

New-VApp -Name MyVApp -CpulLimitMhz 4000 -CpuReservationMhz 1000 -Location (Get-VMHost
MyHost01)

Start the new virtual appliance:

Start-VApp MyVApp

23

vSphere PowerCLI Administration Guide

24

To change the properties of a virtual appliance
1 Retrieve and stop the MyVApp virtual appliance:
Get-VApp MyVApp | Stop-VApp —Confirm:$falseStop-VApp
2 Change the name and memory reservation of the MyVApp virtual appliance:

Get-VApp MyVApp | Set-VApp -Name OldVApp —-MemReservationMB 2000

To export a virtual appliance
1 Retrieve the virtual appliance you want to export:
$oldVApp = Get-VApp O0ldVApp
2 Export the OLdVApp virtual appliance to a local directory and name the exported appliance WebApp:

Export-VApp -VApp $o0ldVApp -Name WebApp -Destination D:\vapps\ -CreateSeparateFolder
To import a virtual appliance

1 Import the WebApp virtual appliance from the specified location to the Storage?2 datastore:

Import-VApp -Source D:\vapps\WebApp\WebApp.ovf -VMHost (Get-VMHost MyHost0l) -Datastore (
Get-Datastore -VMHost MyHost®l1l —Name Storage2)

2 Remove the WebApp appliance and delete it from the disk:

Remove-VApp WebApp -DeleteFromDisk -Confirm:$false

Manage Guest Networks

The following examples illustrate how to retrieve and configure guest network interaces and routes.

To retrieve and configure a network interface
1 Retrieve the guest network interface of the MyVM1 virtual machine:

$myVM1 = Get-VM —Name MyVM1

$interface = Get-VMGuestNetworkInterface -VM $myVM1l -HostUser root —-HostPassword passl
—GuestUser user -GuestPassword pass2

2 Retrieve the network interface of a guest OS:

$fguest = Get-VMGuest $myVM1

$interface = Get-VMGuestNetworkInterface -VMGuest $guest -HostUser root -HostPassword passl
—GuestUser user -GuestPassword pass2 -ToolsWaitSecs 100

3 Configure the network interface:

Set-VMGuestNetworkInterface -VMGuestNetworkInterface $interface -HostUser root -HostPassword
passl -GuestUser user -GuestPassword pass2 -IPPolicy static -IP 10.23.112.69 -Gateway
10.23.115.253 -DnsPolicy static -Dns (10.23.108.1, 10.23.108.2) -WinsPolicy dhcp

To create and configure a guest route

1 Retrieve the existing routes of the virtual machine stored in the $myVM1 variable:

Get-VMGuestRoute -VM $myVM1 -HostUser root —-HostPassword passl -GuestUser user -GuestPassword
pass2 -ToolsWaitSecs 50

2 Retrieve the existing routes of the guest OS stored in the $guest variable:

Get-VMGuestRoute -VMGuest $guest -HostUser root -HostPassword passl -GuestUser user
—GuestPassword pass2

3 Create a new guest route:

$route = New-VMGuestRoute -VM $vmWin -HostUser root -HostPassword passl -GuestUser user
—GuestPassword pass2 -Destination 192.168.100.10 -Netmask 255.255.255.255 -Gateway
10.23.112.58 -Interface $interface.RouteInterfaceld -ToolsWaitSecs 50

VMware, Inc.

Chapter 3 Advanced Cmdlet Usage

Configure the guest route:

$route = Set-VMGuestRoute -VMGuestRoute $route -HostUser root -HostPassword passl -GuestUser
user —-GuestPassword pass2 —-Netmask 255.255.255.254 —Gateway 10.23.112.57

Remove the guest route:

Remove-VMGuestRoute -VMGuestRoute $route -HostUser root -HostPassword passl -GuestUser user
—GuestPassword pass2 -ToolsWaitSecs 100 -Confirm:$false

NOTE Retrieving and configuring guest network interfaces and routes is supported only on servers that are
ESX 3.5 and later.

Work with Host Storages and iSCSI HBA Devices

The following example illustrates enabling iSCSI on a host, adding iSCSI targets, and creating host storages.

To create a new iSCSI host storage

1

Enable software iSCSI on the host:

$myHost = Get-VMHost MyESXHostl

Get-VMHostStorage $myHost | Set-VMHostStorage -SoftwareIScsiEnabled $true

Retrieve the iSCSI HBA on the host:

$iscsiHba = Get-VMHostHba -Type iScsi

Add a new iSCSI target for dynamic discovery (the default port number is 3260):

$iscsiHba | New-IScsiHbaTarget —Address 192.168.0.1 -Type Send

Rescan the HBAs on the host system:

Get-VMHostStorage $myHost —RescanAllHba

Get the lun path (we need the one who's canonical name starts with the device name of the iSCSI HBA):

$lunPath = Get-ScsilLun -VMHost $myHost —CanonicalName ($iscsiHba.Device + "*") |
Get-ScsilLunPath

Create the new storage:

New-Datastore -Vmfs —-VMHost $myHost —Path $lunpath.LunPath —Name iSCSI

Manage PCIl and SCSI Passthough Devices

The following example demonstrates working with PCI and SCSI passthrough devices.

To retrieve and add passthrough devices of a host and virtual machine

1

VMware, Inc.

Retrieve the PCI passthrough devices of the MyESXHost host:

$myHost = Get-VMHost MyESXHost

Get-PassthroughDevice -VMHost $myHost -Type Pci

Retrieve the SCSI passthrough devices of the MyVM virtual machine:

$vm = Get-VM MyVM

Get-PassthroughDevice -VM $vm -Type Scsi

Add a SCSI passthrough device to the MyVM virtual machine:

$scsiDevicelist = Get-PassthroughDevice -VMHost "MyESXHost" -Type Scsi
Add-PassthroughDevice -VM $vm -PassthroughDevice $scsiDevicelist[0]
Remove all passthrough devices of the MyVM virtual machine:

Get-PassthroughDevice -VM $vm | Remove-PassthroughDevice

25

vSphere PowerCLI Administration Guide

26

Creating Custom Properties for vSphere Objects

In PowerCLI, you can create custom properties to add more information to vSphere objects. All custom
properties are available during the life of the Powershell process or until you removed them using the
Remove-VIProperty cmdlet. Two types of custom properties are avilable to you:

Script properties are defined by a name and a script that evaluates when the custom property is retrieved
for first time.

Properties based on extension data properties refer directly to the property of the corresponding .NET
view object.

To create a custom property named ToolsVersion for VirtualMachine objects

1

Create the new custom property based on the Guest.ToolsVersion property:

New-VIProperty -ObjectType VirtualMachine -Name ToolsVersion -ValueFromExtensionProperty
'Guest.ToolsVersion'

List the ToolsVersion properties of the available virtual machines:

Get-VM | Select Name, ToolsVersion

To create a custom script property named NameOfHost for VirtualMachine objects

1

Create a new custom property named NameOfHost that stores the name of the host on which a virtual
machine resides:

New-VIProperty -Name NameOfHost -ObjectType VirtualMachine -Value { return
$args[0] .VMHost.Name }

List the NameOfHost properties of the available virtual machines:

Get-VM | select Name, NameOfHost | Format-Table -AutoSize

Apply Customization Specifications to Virtual Machines

In PowerCLI, there are two types of customization specification objects:

Persistent customization specification objects are stored on the vSphere Server. All persistent
customization specifications created by vSphere Client or PowerCLI 4.1 or higher are encrypted.
Encrypted customization specifications can be applied only by the server which has encrypted them.

Non-persistent customization specification objects exist only inside the current Powershell process.
Non-persistent customization specification objects are not encrypted, but cloning them to a vSphere
server encrypts them.

To apply a customization object to a cloned virtual machine

1

Retrieve the Spec customization specification from the server and clone it for temporary use:
Get-0SCustomizationSpec Spec | New-0SCustomizationSpec -Type NonPersistent —-Name ClientSpec

Change the NamingPrefix property of the customization object to VM1 (the name of the virtual machine
you want to create):

Set-0SCustomizationSpec -Spec ClientSpec -NamingPrefix VM1

Create the VM1 virtual machine by cloning the existing VM virtual machine and applying the customization
specification:

Get-VM VM | New-VM —-VMHost Host -Datastore Storagel —-0SCustomizationSpec ClientSpec -Name VM1

To modify the default NIC mapping object of a customization specification and apply the specification
on a newly created virtual machine

1

Create a non-persistent customization specification for Windows operating systems:

New—-0SCustomizationSpec -Type NonPersistent —Name Spec -0SType Windows -Workgroup Workgroup
-0OrgName Company -Fullname User -ProductKey “valid_key” -ChangeSid -TimeZone "Central
European™ -NamingScheme VM

VMware, Inc.

Chapter 3 Advanced Cmdlet Usage

2 Retrieve the default NIC mapping objects of the Spec specification:

Get-0SCustomizationNicMapping —Spec Spec | Set-OSCustomizationNicMapping -IpMode UseStaticIP
-IpAddress 172.16.1.30 —SubnetMask 255.255.255.0 -DefaultGateway 172.16.1.1 -Dns 172.16.1

Each customization specification object has one default NIC mapping object.
3 Modify the default NIC mapping object of the Spec customization specification with static IP settings:

Get-0SCustomizationNicMapping -Spec Spec | Set-OSCustomizationNicMapping -IpMode UseStaticIP
-IpAddress 172.16.1.30 -SubnetMask 255.255.255.0 -DefaultGateway 172.16.1.1 -Dns 172.16.1.1

4 Create a new virtual machine named VM1 from a template and apply the static IP settings:

New-VM —Name VM1 -VMHost Host -Datastore Storagel -0SCustomizationSpec Spec -Template
Template

To modify multiple NIC mapping objects of a customization specification and apply the specification
on an existing virtual machine

1 Retrieve the network adapters for the VM virtual machine:
Get-NetworkAdapter VM

The VM virtual machine has two network adapters. The first one is connected to the network with a DHCP
server enabled and the second one is connected in a private network.

When you apply a customization specification, each network adapter of the customized virtual machine
must have a corresponding NIC mapping object. You can correlate network adapters and NIC mapping
objects either by their positions, or by MAC address.

2 Create a customization specification named Spec:

New-0SCustomizationSpec -Type NonPersistent —Name Spec -0SType Windows -Workgroup Workgroup
-0OrgName Company -Fullname User —-ProductKey “valid_key” -ChangeSid -TimeZone "Central
European™ -NamingScheme VM

3 Add anew NIC mapping object that uses a static IP address:

New-0SCustomizationNicMapping -Spec Spec -IpMode UseStaticIP -IpAddress 172.16.1.30
—SubnetMask 255.255.255.0 -DefaultGateway 172.16.1.1 -Dns 172.16.1.1

4 Retrieve the NIC mapping objects and verify that there are two NIC mapping objects. The default NIC
mapping object is DHCP enabled and the newly added one uses a static IP address:

Get-0SCustomizationNicMapping -Spec Spec
5 Apply the Spec customization specification to the VM virtual machine:
Get-VM VM | Set-VM -0SCustomizationSpec -Spec Spec

6 Correlate a network adapter from the VMNetwork network with the NIC mapping object that uses DHCP
mode:

$netAdapter = Get-NetworkAdapter VM | where { $_.NetworkName -eq 'VMNetwork' }

Get-0SCustomizationNicMapping -Spec Spec | where { $_.IPMode -eq 'UseDHCP' } |
Set-0SCustomizationNicMapping -NetworkAdapterMac $netAdapter.MacAddress

Web Service Access Cmdlets
The vSphere PowerCLI 4.1 list of cmdlets includes two Web Service Access cmdlets:

B Get-View
B Get-VIObjectByVIView

VMware, Inc. 27

vSphere PowerCLI Administration Guide

They enable access to the programming model of the vSphere SDK for .NET from PowerShell and can be used
to initiate vSphere .NET objects. Each object:

B [s a static copy of a server-side managed object and is not automatically updated when the object on the
server changes.

B Includes properties and methods that correspond to the properties and operations of the server-side
managed object. For more information about server-side object methods and properties, check the
VMuware vSphere API Reference Guide (http://www.vmware.com/support/pubs/sdk_pubs.html).

Using the Web Service Access cmdlets for low-level VMware vSphere management requires some knowledge
of both PowerShell scripting and the VMware vSphere API.

Filter vSphere Objects

This procedure illustrates the use of the Get-View cmdlet in combination with a filter. The filter parameter is
aHashTable containing one or more pairs of filter criteria. Each of the criteria consists of a property path and
a value that represents a regular expression pattern used to match the property.

The filter in this procedure gets a list of the powered on virtual machines whose guest OS names contain
“Windows XP”. The Get-View cmdlet then initiates shutdown for each guest operating system in the list.

To create and apply a filter
1 Create a filter by the power state and the guest operating system name of the virtual machines:
$filter = @{"Runtime.PowerState" ="poweredOn"; "Config.GuestFullName" = "Windows XP"}

2 Get alist of the virtual machines using the created filter and call the ShutdownGuest method for each
virtual machine in the list:

Get-View -ViewType "VirtualMachine" -Filter $filter | foreach{$_.ShutdownGuest()}

Populate a View Object

This procedure illustrates how to populate a view object from an already retrieved managed object using the
Get-View cmdlet.

To populate a view object
1 Get the MyVM2 virtual machine using a filter by name and populates the view object.

$myVM2 = Get-View -ViewType VirtualMachine -Filter @{"Name" = "MyVM2}
$hostView = Get-View -Id $myVM2.Runtime.Host

2 Retrieve runtime information:

$hostView.Summary.Runtime

Update the State of a Server-Side Object

This procedure illustrates how to update the state of server-side objects.

To update the state of a server-side object
1 Get the MyVM2 virtual machine using a filter by name:

$myVM2 = Get-View -ViewType VirtualMachine -Filter @{"Name" = "MyVM2}
$hostView = Get-View -Id $myVM2.Runtime.Host

2 Print the current power state:

$myVM2.Runtime.PowerState

28 VMware, Inc.

http://www.vmware.com/support/pubs/sdk_pubs.html

Chapter 3 Advanced Cmdlet Usage

3 Change the power state of the virtual machine:

If ($myVM2.Runtime.PowerState -ne “PoweredOn”) {
$vm.PowerOnVM($myVM2 .Runtime.Host)

} else {
$myVM2 . PowerOffvM()

}

4 Print the value of $myVM2 power state (the power state is still not updated because the virtual machine
property values are not updated automatically):

$myVM2.Runtime.PowerState
5 Update the view:
$myVM2 . UpdateViewData ()
6 Show the actual power state of the virtual machine:

$myVM2.Runtime.PowerState

Mixed Usage of vSphere PowerCLI and Web Service Access Cmdlets

To get more advantages of the usability and functionality of the vSphere PowerCLI cmdlets and the Web
Service Access cmdlets you can use them together.

To reboot a virtual machine host

1 Usethe Get-VMHost cmdlet to get a virtual machine host by its name, and pass the result to the Get-View
cmdlet to retrieve the host view:

$hostView = Get-VMHost -Name MyHost | Get-View

2 Call the reboot method of the host view object to reboot the host:
$hostView.RebootHost ()

To modify the CPU levels of a virtual machine

This example shows how to modify the CPU levels of a virtual machine using combination of the Get-View
and Get-VIObjectByVIView cmdlets.

1 Retrieve the MyVM2 virtual machine, shut down it, and pass the result to the Get-View cmdlet to retrieve
the virtual machine view object:

$vmView = Get-VM MyVM2 | Stop-VM | Get-View

2 Create a VirtualMachineConfigSpec object to modify the virtual machine CPU levels and call the
ReconfigVM method of the virtual machine view managed object.

$spec = New-Object VMware.Vim.VirtualMachineConfigSpec;
$spec.CPUAllocation = New-Object VMware.Vim.ResourceAllocationInfo;
$spec.CpuAllocation.Shares = New-Object VMware.Vim.SharesInfo;
$spec.CpuAllocation.Shares.Level = "normal";
$spec.CpuAllocation.Limit = -1;

$vmView .ReconfigVM_Task($spec)
3 Get a virtual machine object by using the Get-VIObjectByVIView cmdlet and start the virtual machine.

$myVM = Get-VIObjectByVIView $vmView | Start-vM

VMware, Inc. 29

vSphere PowerCLI Administration Guide

The Inventory Provider

30

The Inventory Provider (VimInventory) is designed to expose a raw inventory view of the inventory items
from a server. It enables interactive navigation and file-style management of the VMware vSphere inventory.
By creating a PowerShell drive based on a managed object (such as a datacenter), you obtain a view of its
contents and the relationships between the items. In addition, you are able to manipulate objects (move,
rename or delete them) by running commands from the vSphere PowerCLI console.

When you connect to a server with Connect-VIServer, the cmdlet builds two default inventory drives: vi
and vis. The vi inventory drive shows the inventory on the last connected server. The vis drive contains the
inventory all vSphere servers connected within the current vSphere PowerCLI session..

You can use the default inventory drives or create custom drives based on the default ones.

Basic Functions of the Inventory Provider

The following procedure illustrates some basic operations with the inventory provider.

To view the content of a default inventory drive
1 Access the vi inventory drive:
cd vi:
2 List the drive content:
dir
dir is an alias of the Get-ChildItem cmdlet.
To create a new custom inventory drive
1 Get the root folder of the server:
$root = Get-Folder -NoRecursion
2 Create a PowerShell drive named myV1i in the server root folder:

New-PSDrive -Location $root -Name myVi —-PSProvider VimInventory -Root '\'

NOTE You can use the New-InventoryDrive cmdlet thatis an alias of New—PSDrive. This cmdlet creates
a new inventory drive using the Name and Datastore parameters. For example:

Get-Folder -NoRecursion | New-VIInventoryDrive —-Name myVi

A different way to create a inventory drive is to map an existing inventory path:
New-PSDrive -Name myVi —-PSProvider VimInventory -Root “vi:\Folder0l\Datacenter0l”
To manage inventory objects through inventory drives
1 Navigate through your server inventory by running the cd command with the full path to the host:
cd Folder@l\DataCenter0l\host\Web\Host01
2 List the content of the host using the 1s command:
1s
1s is the UNIX style alias of the Get-ChildItem cmdlet.
This command returns the virtual machines and the root resource pool of the host.
3 View only the virtual machines on the host:
Get-VM

When called within the inventory drive, Get-VM retrieves only the virtual machines on the current drive
location.

VMware, Inc.

Chapter 3 Advanced Cmdlet Usage

4 Delete a virtual machine named VM1:
del VM1
5 Rename a virtual machine from VM1New to VM1:
ren VM1New VM1
6 Start all virtual machines whose names start with VM:

dir VM* | Start-WM

The Datastore Provider

The Datastore Provider (VimDatastore) is designed to provide access to the contents of one or more
datastores. The items in a datastore are files that contain configuration, virtual disk, and the other data
associated with a virtual machine.All file operations are case-sensitive.

When you connect to a server with Connect-VIServer, the cmdlet builds two default datastore drives:
vmstores and vmstore. The vmstore drive displays the datastores available on the last connected vSphere
server. The vmstores drive contains all datastores available on all vSphere servers connected within the
current vSphere PowerCLI session.

You can use the default inventory drives or create custom drives based on the default ones.

Basic functions of the Datastore Provider

The following procedures illustrate some basic functions of the Datastore Provider.

To browse a default datastore drive

1 Access the vmstore drive:
cd vmstore:

2 List the drive content:
dir

To create a new custom datastore drive

1 Get a datstore by its name and assign it to the $datastore variable:
$datastore = Get-Datastore Storagel

2 Create a new PowerShell drive ds: in $datastore:

New—-PSDrive -Location $datastore —-Name ds —-PSProvider VimDatastore —-Root "\'

NOTE You can use the New-PSDrive cmdlet that is an alias of New-DatastoreDrive. It creates a new
datastore drive using the Name and Datastore parameters. For example:

Get-Datastore Storagel |New-DatastoreDrive -Name ds

A different way to create a datastore drive is to map an existing datastore path. For example:

New-PSDrive —-Name ds —-PSProvider VimDatastore -Root
vmstore:\Folder0@l\Datacenter0l\Datastore®l\Folder0l

To manage datastores through datastore drives

1 Navigate to a specific folder on the ds: drive:
cd VirtualMachines\XPVirtualMachine

2 List the files of the folder, using the 1s command:
1s

1s is the UNIX style alias of the Get-ChildItem cmdlet.

VMware, Inc. 31

vSphere PowerCLI Administration Guide

32

Rename a file, using the Rename—Item cmdlet or its alias ren. For example, to change the name of the
vmware-3.log file to vmware-3o1ld. log, run the following command:

ren vmware-3.log vmware-3old.log
All file operations apply only on files in the current folder.

Delete a file, using the Remove-Item cmdlet or its alias del. For example, to remove the
vmware-3old. log file from the XPVirtualMachine folder, use the following command:

del ds:\VirtualMachines\XPVirtualMachine\vmware-2.1log

Copy a file, using the Copy-Item cmdlet or its alias copy:

copy ds:\VirtualMachines\XPVirtualMachine\vmware-3o0ld.log ds:\VirtualMachines\vmware-3.log
Copy a file to another datastore, using the Copy-Item cmdlet or its alias copy:

copy ds:\Datacenter0l\Datastore@1\XPVirtualMachine\vmware-1.1log
ds:\Datacenter0l\Datastore02\XPVirtualMachine®2\vmware.log

Create a new folder, using the New-Item cmdlet or its alias mkdir:

mkdir -Path ds:\VirtualMachines -Name Folder0l -Type Folder

Download a file to the local machine using the Copy-DatastoreItem cmdlet:

Copy-DatastoreItem ds:\VirtualMachines\XPVirtualMachine\vmware-3.log C:\Temp\vmware-3.1log
Upload a file from the local machine, using the Copy-DatastoreItem cmdlet:

Copy-DatastoreItem C:\Temp\vmware-3.log ds:\VirtualMachines\XPVirtualMachine\vmware-3new.log

VMware, Inc.

	vSphere PowerCLI Administration Guide
	Contents
	About This Book
	Getting Started with vSphere PowerCLI
	Introduction to the vSphere PowerCLI Cmdlets
	Command-Line Syntax
	Launching vSphere PowerCLI
	List All vSphere PowerCLI Cmdlets
	Displaying Help for Any Cmdlet
	Connecting to a Server

	Basic Cmdlet Usage
	PowerShell Cmdlet Usage
	Pipelines
	Wildcards
	Common Parameters

	vSphere PowerCLI Specific Cmdlet Usage
	Specifying Objects
	Managing Default Servers
	Running PowerCLI Cmdlets Asynchronously
	Using Custom Scripts to Extend the Operating System Support for PowerCLI Cmdlets

	Examples of Basic Usage of the vSphere PowerCLI Cmdlets
	Connecting to a Server
	Basic Virtual Machine Operations
	Basic Virtual Machine Host Operations

	Advanced Cmdlet Usage
	Examples of Advanced Cmdlet Usage
	Using the vSphere PowerCLI Cmdlets
	Create vSphere Objects
	Use Virtual Machine Templates
	Create Virtual Machines Using an XML Specification File
	Create Snapshots
	Update the Resource Configuration Settings of a Virtual Machine
	List Various Virtual Machine Hosts and Displaying Their Properties
	Change the Host Advanced Configuration Settings
	Migrate a Virtual Machine
	Use Virtual Machine Host Profiles
	Manage Statistics and Statistics Intervals
	Configure the NIC Teaming Policy of a Virtual Switch
	Manage Virtual Appliances
	Manage Guest Networks
	Work with Host Storages and iSCSI HBA Devices
	Manage PCI and SCSI Passthough Devices
	Creating Custom Properties for vSphere Objects
	Apply Customization Specifications to Virtual Machines

	Web Service Access Cmdlets
	Filter vSphere Objects
	Populate a View Object
	Update the State of a Server-Side Object

	Mixed Usage of vSphere PowerCLI and Web Service Access Cmdlets

	The Inventory Provider
	Basic Functions of the Inventory Provider

	The Datastore Provider
	Basic functions of the Datastore Provider

