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VMware® ESX™ is a hypervisor designed to efficiently manage hardware resources including CPU, 
memory, storage, and network among multiple, concurrent virtual machines. This paper describes the basic 
memory management concepts in ESX, the configuration options available, and provides results to show the 
performance impact of these options. The focus of this paper is in presenting the fundamental concepts of 
these options. 1

This paper is organized as follows: 

 

 Section 1. “Introduction” on page 1 

 Section 2. “ESX Memory Management Overview” on page 2 

 Section 3. “Memory Reclamation in ESX” on page 5 

 Section 4. “ESX Memory Allocation Management for Multiple Virtual Machines” on page 13 

 Section 5. “Performance Evaluation” on page 15 

 Section 6. “Best Practices” on page 24 

 Section 7. “References” on page 25 

Memory compression is a new feature for VMware ESX 4.1 and is covered in Section 3.5, “Memory 
Compression” on page 10 and Section 5.4, “Memory Compression Performance” on page 22. 

1. Introduction 
ESX uses high-level resource management policies to compute a target memory allocation for each virtual 
machine (VM) based on the current system load and parameter settings for the virtual machine (shares, 
reservation, and limit [2]). The computed target allocation is used to guide the dynamic adjustment of the 
memory allocation for each virtual machine. In the cases where host memory is overcommitted, the target 
allocations are still achieved by invoking several lower-level mechanisms to reclaim memory from virtual 
machines.  

This paper assumes a pure virtualization environment in which the guest operating system running inside 
the virtual machine is not modified to facilitate virtualization (often referred to as paravirtualization). 
Knowledge of ESX architecture will help you understand the concepts presented in this paper. 

                                                                 

1 More details can be found in Memory Resource Management in VMware ESX Server [1]. 
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The VMware vSphere™ Client exposes several memory statistics in the performance charts. Among them 
are charts for the following memory types: consumed, active, shared, granted, overhead, balloon, swapped, 
and compressed.. A complete discussion about these metrics can be found in “Memory Performance Chart 
Metrics in the vSphere Client” [3] and “VirtualCenter Memory Statistics Definitions” [4]. 

Two important memory statistics are Consumed Memory and Active Memory. You can use the charts for 
these statistics to quickly monitor the host memory and virtual machine memory usage.  

Figure 1. Host and Active Memory usage in vSphere Client Performance Charts 

 

 

Consumed Memory usage is defined as the amount of host memory that is allocated to the virtual machine, 
Active Memory is defined as the amount of guest memory that is currently being used by the guest 
operating system and its applications. These two statistics are quite useful for analyzing the memory status 
of the virtual machine and providing hints to address potential performance issues. 

This paper helps answer these questions: 

 Why is the Consumed Memory so high? 

 Why is the Consumed Memory usage sometimes much larger than the Active Memory? 

 Why is the Active Memory different from what is seen inside the guest operating system?  

These questions cannot be easily answered without understanding the basic memory management concepts 
in ESX. Understanding how ESX manages memory will also make the performance implications of changing 
ESX memory management parameters clearer. 

2. ESX Memory Management Overview 
2.1 Terminology 

The following terminology is used throughout this paper. 

 Host physical memory2

                                                                 
2 The terms host physical memory and host memory are used interchangeably in this paper. They are also equivalent to the term 
machine memory used in “Memory Resource Management in VMware ESX Server” [1]. 

 refers to the memory that is visible to the hypervisor as available on the system. 
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 Guest physical memory refers to the memory that is visible to the guest operating system running in the 
virtual machine. 

 Guest virtual memory refers to a continuous virtual address space presented by the guest operating 
system to applications. It is the memory that is visible to the applications running inside the virtual 
machine. 

 Guest physical memory is backed by host physical memory, which means the hypervisor provides a 
mapping from the guest to the host memory. 

 The memory transfer between the guest physical memory and the guest swap device is referred to as 
guest level paging and is driven by the guest operating system. The memory transfer between guest 
physical memory and the host swap device is referred to as hypervisor swapping, which is driven by 
the hypervisor. 

2.2 Memory Virtualization Basics 
Virtual memory is a well-known technique used in most general-purpose operating systems, and almost all 
modern processors have hardware to support it. Virtual memory creates a uniform virtual address space for 
applications and allows the operating system and hardware to handle the address translation between the 
virtual address space and the physical address space. This technique not only simplifies the programmer’s 
work, but also adapts the execution environment to support large address spaces, process protection, file 
mapping, and swapping in modern computer systems.  

When running a virtual machine, the hypervisor creates a contiguous addressable memory space for the 
virtual machine. This memory space has the same properties as the virtual address space presented to the 
applications by the guest operating system. This allows the hypervisor to run multiple virtual machines 
simultaneously while protecting the memory of each virtual machine from being accessed by others. 
Therefore, from the view of the application running inside the virtual machine, the hypervisor adds an extra 
level of address translation that maps the guest physical address to the host physical address. As a result, 
there are three virtual memory layers in ESX: guest virtual memory, guest physical memory, and host 
physical memory. Their relationships are illustrated in Figure 2 (a). 

Figure 2. Virtual memory levels (a) and memory address translation (b) in ESX 

 

As shown in Figure 2 (b), in ESX, the address translation between guest physical memory and host physical 
memory is maintained by the hypervisor using a physical memory mapping data structure, or pmap, for 
each virtual machine. The hypervisor intercepts all virtual machine instructions that manipulate the 
hardware translation lookaside buffer (TLB) contents or guest operating system page tables, which contain 
the virtual to physical address mapping. The actual hardware TLB state is updated based on the separate 
shadow page tables, which contain the guest virtual to host physical address mapping. The shadow page 
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tables maintain consistency with the guest virtual to guest physical address mapping in the guest page 
tables and the guest physical to host physical address mapping in the pmap data structure. This approach 
removes the virtualization overhead for the virtual machine’s normal memory accesses because the 
hardware TLB will cache the direct guest virtual to host physical memory address translations read from the 
shadow page tables. Note that the extra level of guest physical to host physical memory indirection is 
extremely powerful in the virtualization environment. For example, ESX can easily remap a virtual 
machine’s host physical memory to files or other devices in a manner that is completely transparent to the 
virtual machine.  

Recently, some new generation CPUs, such as third generation AMD Opteron and Intel Xeon 5500 series 
processors, have provided hardware support for memory virtualization by using two layers of page tables 
in hardware. One layer stores the guest virtual to guest physical memory address translation, and the other 
layer stores the guest physical to host physical memory address translation. These two page tables are 
synchronized using processor hardware. Support for hardware memory virtualization eliminates the 
overhead required to keep shadow page tables in synchronization with guest page tables in software 
memory virtualization. For more information about hardware-assisted memory virtualization, see 
“Performance Evaluation of Intel EPT Hardware Assist” [5] and “Performance Evaluation of AMD RVI 
Hardware Assist.” [6] 

2.3 Memory Management Basics in ESX 
Prior to talking about how ESX manages memory for virtual machines, it is useful to first understand how 
the application, guest operating system, hypervisor, and virtual machine manage memory at their respective 
layers.  

 An application starts and uses the interfaces provided by the operating system to explicitly allocate or 
deallocate virtual memory during its execution. 

 In a non-virtual environment, the operating system assumes it owns all physical memory in the system. 
The hardware does not provide interfaces for the operating system to explicitly “allocate” or “free” 
physical memory. The operating system establishes the definitions of “allocated” or “free” physical 
memory. Different operating systems have different implementations to realize this abstraction. One 
example is that the operating system maintains an “allocated” list and a “free” list, so whether or not a 
physical page is free depends on which list the page currently resides in. 

 Because a virtual machine runs an operating system and several applications, the virtual machine 
memory management properties combine both application and operating system memory management 
properties. Like an application, when a virtual machine first starts, it has no pre-allocated physical 
memory. Like an operating system, the virtual machine cannot explicitly allocate host physical memory 
through any standard interface. The hypervisor also creates the definitions of “allocated” and “free” 
host memory in its own data structures. The hypervisor intercepts the virtual machine’s memory 
accesses and allocates host physical memory for the virtual machine on its first access to the memory. In 
order to avoid information leaking among virtual machines, the hypervisor always writes zeroes to the 
host physical memory before assigning it to a virtual machine.  

 Virtual machine memory deallocation acts just like an operating system, such that the guest operating 
system frees a piece of physical memory by adding these memory page numbers to the guest free list, 
but the data of the “freed” memory may not be modified at all. As a result, when a particular piece of 
guest physical memory is freed, the mapped host physical memory will usually not change its state and 
only the guest free list will be changed. 

The hypervisor knows when to allocate host physical memory for a virtual machine because the first 
memory access from the virtual machine to a host physical memory will cause a page fault that can be easily 
captured by the hypervisor. However, it is difficult for the hypervisor to know when to free host physical 
memory upon virtual machine memory deallocation because the guest operating system free list is generally 
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not publicly accessible. Hence, the hypervisor cannot easily find out the location of the free list and monitor 
its changes.  

Although the hypervisor cannot reclaim host memory when the operating system frees guest physical 
memory, this does not mean that the host memory, no matter how large it is, will be used up by a virtual 
machine when the virtual machine repeatedly allocates and frees memory. This is because the hypervisor 
does not allocate host physical memory on every virtual machine’s memory allocation. It only allocates host 
physical memory when the virtual machine touches the physical memory that it has never touched before. If 
a virtual machine frequently allocates and frees memory, presumably the same guest physical memory is 
being allocated and freed again and again. Therefore, the hypervisor just allocates host physical memory for 
the first memory allocation and then the guest reuses the same host physical memory for the rest of the 
allocations. That is, if a virtual machine’s entire guest physical memory (configured memory) has been 
backed by the host physical memory, the hypervisor does not need to allocate any host physical memory for 
this virtual machine any more. This means that Equation 1 always holds true:  

Equation 1.  

VM’s host memory usage <= VM’s guest memory size + VM’s overhead memory  

Here, the virtual machine’s overhead memory is the extra host memory needed by the hypervisor for 
various virtualization data structures besides the memory allocated to the virtual machine. Its size depends 
on the number of virtual CPUs and the configured virtual machine memory size. For more information, see 
the vSphere Resource Management Guide [2]. 

3. Memory Reclamation in ESX  
ESX uses several innovative techniques to reclaim virtual machine memory, which are:  

 Transparent page sharing (TPS)—reclaims memory by removing redundant pages with identical 
content 

 Ballooning—reclaims memory by artificially increasing the memory pressure inside the guest 

 Hypervisor swapping—reclaims memory by having ESX directly swap out the virtual machine’s 
memory 

 Memory compression—reclaims memory by compressing the pages that need to be swapped out 

The following sections describe these techniques and the motivation behind memory reclamation. 

3.1 Motivation  
According to Equation 1 above, if the hypervisor cannot reclaim host physical memory upon virtual 
machine memory deallocation, it must reserve enough host physical memory to back all virtual machine’s 
guest physical memory (plus their overhead memory) in order to prevent any virtual machine from running 
out of host physical memory. This means that memory overcommitment cannot be supported. The concept 
of memory overcommitment is fairly simple: host memory is overcommitted when the total amount of guest 
physical memory of the running virtual machines is larger than the amount of actual host memory. ESX 
supports memory overcommitment from the very first version, due to two important benefits it provides: 

 Higher memory utilization: With memory overcommitment, ESX ensures that host memory is 
consumed by active guest memory as much as possible. Typically, some virtual machines may be 
lightly loaded compared to others. Their memory may be used infrequently, so for much of the time 
their memory will sit idle. Memory overcommitment allows the hypervisor to use memory reclamation 
techniques to take the inactive or unused host physical memory away from the idle virtual machines 
and give it to other virtual machines that will actively use it. 
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 Higher consolidation ratio: With memory overcommitment, each virtual machine has a smaller 
footprint in host memory usage, making it possible to fit more virtual machines on the host while still 
achieving good performance for all virtual machines. For example, as shown in Figure 3, you can enable 
a host with 4G host physical memory to run three virtual machines with 2G guest physical memory 
each. Without memory overcommitment, only one virtual machine can be run because the hypervisor 
cannot reserve host memory for more than one virtual machine, considering that each virtual machine 
has overhead memory. 

Figure 3. Memory overcommitment in ESX  

  

In order to effectively support memory overcommitment, the hypervisor must provide efficient host 
memory reclamation techniques. ESX leverages several innovative techniques to support virtual machine 
memory reclamation. These techniques are transparent page sharing, ballooning, and host swapping. In ESX 
4.1, before host swapping, ESX applies a new technique called memory compression in order to reduce the 
amount of pages that need to be swapped out, while reclaiming the same amount of host memory. 

3.2 Transparent Page Sharing (TPS) 
When multiple virtual machines are running, some of them may have identical sets of memory content. This 
presents opportunities for sharing memory across virtual machines (as well as sharing within a single 
virtual machine). For example, several virtual machines may be running the same guest operating system, 
have the same applications, or contain the same user data. With page sharing, the hypervisor can reclaim 
the redundant copies and keep only one copy, which is shared by multiple virtual machines in the host 
physical memory. As a result, the total virtual machine host memory consumption is reduced and a higher 
level of memory overcommitment is possible.  

In ESX, the redundant page copies are identified by their contents. This means that pages with identical 
content can be shared regardless of when, where, and how those contents are generated. ESX scans the 
content of guest physical memory for sharing opportunities. Instead of comparing each byte of a candidate 
guest physical page to other pages, an action that is prohibitively expensive, ESX uses hashing to identify 
potentially identical pages. The detailed algorithm is illustrated in Figure 4.  
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Figure 4. Content-based page sharing in ESX 

  

A hash value is generated based on the candidate guest physical page’s content. The hash value is then used 
as a key to look up a global hash table, in which each entry records a hash value and the physical page 
number of a shared page. If the hash value of the candidate guest physical page matches an existing entry, a 
full comparison of the page contents is performed to exclude a false match. Once the candidate guest 
physical page’s content is confirmed to match the content of an existing shared host physical page, the guest 
physical to host physical mapping of the candidate guest physical page is changed to the shared host 
physical page, and the redundant host memory copy (the page pointed to by the dashed arrow in Figure 4) 
is reclaimed. This remapping is invisible to the virtual machine and inaccessible to the guest operating 
system. Because of this invisibility, sensitive information cannot be leaked from one virtual machine to 
another.  

A standard copy-on-write (CoW) technique is used to handle writes to the shared host physical pages. Any 
attempt to write to the shared pages will generate a minor page fault. In the page fault handler, the 
hypervisor will transparently create a private copy of the page for the virtual machine and remap the 
affected guest physical page to this private copy. In this way, virtual machines can safely modify the shared 
pages without disrupting other virtual machines sharing that memory. Note that writing to a shared page 
does incur overhead compared to writing to non-shared pages due to the extra work performed in the page 
fault handler.  

In VMware ESX, the hypervisor scans the guest physical pages randomly with a base scan rate specified by 
Mem.ShareScanTime, which specifies the desired time to scan the virtual machine’s entire guest memory. 
The maximum number of scanned pages per second in the host and the maximum number of per-virtual 
machine scanned pages, (that is, Mem.ShareScanGHz and Mem.ShareRateMax respectively) can also be 
specified in ESX advanced settings. An example is shown in Figure 5. 
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Figure 5. Configure page sharing in vSphere Client   

 

  

The default values of these three parameters are carefully chosen to provide sufficient sharing opportunities 
while keeping the CPU overhead negligible. In fact, ESX intelligently adjusts the page scan rate based on the 
amount of current shared pages. If the virtual machine’s page sharing opportunity seems to be low, the page 
scan rate will be reduced accordingly and vice versa. This optimization further mitigates the overhead of 
page sharing. 

In hardware-assisted memory virtualization (for example, Intel EPT Hardware Assist and AMD RVI 
Hardware Assist [6]) systems, ESX will automatically back guest physical pages with large host physical 
pages (2MB contiguous memory region instead of 4KB for regular pages) for better performance due to less 
TLB misses. In such systems, ESX will not share those large pages because: 1) the probability of finding two 
large pages having identical contents is low, and 2) the overhead of doing a bit-by-bit comparison for a 2MB 
page is much larger than for a 4KB page. However, ESX still generates hashes for the 4KB pages within each 
large page. Since ESX will not swap out large pages, during host swapping, the large page will be broken 
into small pages so that these pre-generated hashes can be used to share the small pages before they are 
swapped out. In short, we may not observe any page sharing for hardware-assisted memory virtualization 
systems until host memory is overcommitted.  

3.3 Ballooning 
Ballooning is a completely different memory reclamation technique compared to transparent page sharing. 
Before describing the technique, it is helpful to review why the hypervisor needs to reclaim memory from 
virtual machines. Due to the virtual machine’s isolation, the guest operating system is not aware that it is 
running inside a virtual machine and is not aware of the states of other virtual machines on the same host. 
When the hypervisor runs multiple virtual machines and the total amount of the free host memory becomes 
low, none of the virtual machines will free guest physical memory because the guest operating system 
cannot detect the host’s memory shortage. Ballooning makes the guest operating system aware of the low 
memory status of the host. 

In ESX, a balloon driver is loaded into the guest operating system as a pseudo-device driver.3

                                                                 
3 VMware Tools must be installed in order to enable ballooning. This is recommended for all workloads. 

 It has no 
external interfaces to the guest operating system and communicates with the hypervisor through a private 
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channel. The balloon driver polls the hypervisor to obtain a target balloon size. If the hypervisor needs to 
reclaim virtual machine memory, it sets a proper target balloon size for the balloon driver, making it 
“inflate” by allocating guest physical pages within the virtual machine. Figure 6 illustrates the process of the 
balloon inflating.  

In Figure 6 (a), four guest physical pages are mapped in the host physical memory. Two of the pages are 
used by the guest application and the other two pages (marked by stars) are in the guest operating system 
free list. Note that since the hypervisor cannot identify the two pages in the guest free list, it cannot reclaim 
the host physical pages that are backing them. Assuming the hypervisor needs to reclaim two pages from 
the virtual machine, it will set the target balloon size to two pages. After obtaining the target balloon size, 
the balloon driver allocates two guest physical pages inside the virtual machine and pins them, as shown in 
Figure 6 b. Here, “pinning” is achieved through the guest operating system interface, which ensures that the 
pinned pages cannot be paged out to disk under any circumstances. Once the memory is allocated, the 
balloon driver notifies the hypervisor about the page numbers of the pinned guest physical memory so that 
the hypervisor can reclaim the host physical pages that are backing them. In Figure 6 (b), dashed arrows 
point at these pages. The hypervisor can safely reclaim this host physical memory because neither the 
balloon driver nor the guest operating system relies on the contents of these pages. This means that no 
processes in the virtual machine will intentionally access those pages to read/write any values. Thus, the 
hypervisor does not need to allocate host physical memory to store the page contents. If any of these pages 
are re-accessed by the virtual machine for some reason, the hypervisor will treat it as a normal virtual 
machine memory allocation and allocate a new host physical page for the virtual machine. When the 
hypervisor decides to deflate the balloon—by setting a smaller target balloon size—the balloon driver 
deallocates the pinned guest physical memory, which releases it for the guest’s applications. 

Figure 6. Inflating the balloon in a virtual machine  

 

Typically, the hypervisor inflates the virtual machine balloon when it is under memory pressure. By 
inflating the balloon, a virtual machine consumes less physical memory on the host, but more physical 
memory inside the guest. As a result, the hypervisor offloads some of its memory overload to the guest 
operating system while slightly loading the virtual machine. That is, the hypervisor transfers the memory 
pressure from the host to the virtual machine. Ballooning induces guest memory pressure. In response, the 
balloon driver allocates and pins guest physical memory. The guest operating system determines if it needs 
to page out guest physical memory to satisfy the balloon driver’s allocation requests. If the virtual machine 
has plenty of free guest physical memory, inflating the balloon will induce no paging and will not impact 
guest performance. In this case, as illustrated in Figure 6, the balloon driver allocates the free guest physical 
memory from the guest free list. Hence, guest-level paging is not necessary. However, if the guest is already 
under memory pressure, the guest operating system decides which guest physical pages to be paged out to 
the virtual swap device in order to satisfy the balloon driver’s allocation requests. The genius of ballooning 
is that it allows the guest operating system to intelligently make the hard decision about which pages to be 
paged out without the hypervisor’s involvement. 
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For ballooning to work as intended, the guest operating system must install and enable the balloon driver, 
which is included in VMware Tools. The guest operating system must have sufficient virtual swap space 
configured for guest paging to be possible. Ballooning might not reclaim memory quickly enough to satisfy 
host memory demands. In addition, the upper bound of the target balloon size may be imposed by various 
guest operating system limitations.  

3.4 Hypervisor Swapping 
In the cases where ballooning and transparent page sharing are not sufficient to reclaim memory, ESX 
employs hypervisor swapping to reclaim memory. At virtual machine startup, the hypervisor creates a 
separate swap file for the virtual machine. Then, if necessary, the hypervisor can directly swap out guest 
physical memory to the swap file, which frees host physical memory for other virtual machines.  

Besides the limitation on the reclaimed memory size, both page sharing and ballooning take time to reclaim 
memory. The page-sharing speed depends on the page scan rate and the sharing opportunity. Ballooning 
speed relies on the guest operating system’s response time for memory allocation.  

In contrast, hypervisor swapping is a guaranteed technique to reclaim a specific amount of memory within a 
specific amount of time.  However, hypervisor swapping is used as a last resort to reclaim memory from the 
virtual machine due to the following limitations on performance: 

 Page selection problems: Under certain circumstances, hypervisor swapping may severely penalize 
guest performance. This occurs when the hypervisor has no knowledge about which guest physical 
pages should be swapped out, and the swapping may cause unintended interactions with the native 
memory management policies in the guest operating system. 

 Double paging problems: Another known issue is the double paging problem. Assuming the 
hypervisor swaps out a guest physical page, it is possible that the guest operating system pages out the 
same physical page, if the guest is also under memory pressure. This causes the page to be swapped in 
from the hypervisor swap device and immediately to be paged out to the virtual machine’s virtual 
swap device.  

Page selection and double-paging problems exist because the information needed to avoid them is not 
available to the hypervisor. 

 High swap-in latency: Swapping in pages is expensive for a VM. If the hypervisor swaps out a guest 
page and the guest subsequently accesses that page, the VM will get blocked until the page is swapped 
in from disk. High swap-in latency, which can be tens of milliseconds, can severely degrade guest 
performance. 

ESX mitigates the impact of interacting with guest operating system memory management by randomly 
selecting the swapped guest physical pages.  

3.5 Memory Compression 
The idea of memory compression is very straightforward: if the swapped out pages can be compressed and 
stored in a compression cache located in the main memory, the next access to the page only causes a page 
decompression which can be an order of magnitude faster than the disk access. With memory compression, 
only a few uncompressible pages need to be swapped out if the compression cache is not full. This means 
the number of future synchronous swap-in operations will be reduced. Hence, it may improve application 
performance significantly when the host is in heavy memory pressure. In ESX 4.1, only the swap candidate 
pages will be compressed. This means ESX will not proactively compress guest pages when host swapping 
is not necessary. In other words, memory compression does not affect workload performance when host 
memory is undercommitted. 

3.5.1 Reclaiming Memory Through Compression 

Figure 8 illustrates how memory compression reclaims host memory compared to host swapping. 
Assuming ESX needs to reclaim two 4KB physical pages from a VM through host swapping, page A and B 
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are the selected pages (Figure 8a). With host swapping only, these two pages will be directly swapped to 
disk and two physical pages are reclaimed (Figure 8b). However, with memory compression, each swap 
candidate page will be compressed and stored using 2KB of space in a per-VM compression cache. Note that 
page compression would be much faster than the normal page swap out operation which involves a disk 
I/O. Page compression will fail if the compression ratio is less than 50% and the uncompressible pages will 
be swapped out. As a result, every successful page compression is accounted for reclaiming 2KB of physical 
memory. As illustrated in Figure 8c, pages A and B are compressed and stored as half-pages in the 
compression cache. Although both pages are removed from VM guest memory, the actual reclaimed 
memory size is one page.  

Figure 8. Host swapping vs. memory compression in ESX 

 

If any of the subsequent memory access misses in the VM guest memory, the compression cache will be 
checked first using the host physical page number. If the page is found in the compression cache, it will be 
decompressed and push back to the guest memory. This page is then removed from the compression cache. 
Otherwise, the memory request is sent to the host swap device and the VM is blocked. 

 

3.5.2 Managing Per-VM Compression Cache 

The per-VM compression cache is accounted for by the VM’s guest memory usage, which means ESX will 
not allocate additional host physical memory to store the compressed pages. The compression cache is 
transparent to the guest OS. Its size starts with zero when host memory is undercommitted and grows when 
virtual machine memory starts to be swapped out.  

If the compression cache is full, one compressed page must be replaced in order to make room for a new 
compressed page. An age-based replacement policy is used to choose the target page. The target page will 
be decompressed and swapped out. ESX will not swap out compressed pages. 

If the pages belonging to compression cache need to be swapped out under severe memory pressure, the 
compression cache size is reduced and the affected compressed pages are decompressed and swapped out. 

The maximum compression cache size is important for maintaining good VM performance. If the upper 
bound is too small, a lot of replaced compressed pages must be decompressed and swapped out. Any 
following swap-ins of those pages will hurt VM performance. However, since compression cache is 
accounted for by the VM’s guest memory usage, a very large compression cache may waste VM memory 
and unnecessarily create VM memory pressure especially when most compressed pages would not be 
touched in the future. In ESX 4.1, the default maximum compression cache size is conservatively set to 10% 
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of configured VM memory size. This value can be changed through the vSphere Client in Advanced Settings 
by changing the value for Mem.MemZipMaxPct.  

 

Figure 7. Change the maximum compression cache size in the vSphere Client 

 

3.6 When to Reclaim Host Memory4

ESX maintains four host free memory states: high, soft, hard, and low, which are reflected by four 
thresholds: 6%, 4%, 2%, and 1% of host memory respectively. Figure 8 shows how the host free memory 
state is reported in esxtop. 

  

By default, ESX enables page sharing since it opportunistically “frees” host memory with little overhead. 
When to use ballooning or swapping (which activates memory compression) to reclaim host memory is 
largely determined by the current host free memory state.  

                                                                 
4 The discussions and conclusions made in this section may not be valid when the user specifies a resource pool for virtual 
machines. For example, if the resource pool that contains a virtual machine is specified as a small memory limit, ballooning or 
hypervisor swapping occur for the virtual machine even when the host free memory is in the high state. The detailed explanation of 
resource pool is beyond the scope of this paper. Most of the details can be found in the “Managing Resource Pools” section of the 
vSphere Resource Management Guide [2]. 
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Figure 8. Host free memory state in esxtop  

 

  

In the high state, the aggregate virtual machine guest memory usage is smaller than the host memory size. 
Whether or not host memory is overcommitted, the hypervisor will not reclaim memory through ballooning 
or swapping. (This is true only when the virtual machine memory limit is not set.)  

If host free memory drops towards the soft threshold, the hypervisor starts to reclaim memory using 
ballooning. Ballooning happens before free memory actually reaches the soft threshold because it takes time 
for the balloon driver to allocate and pin guest physical memory. Usually, the balloon driver is able to 
reclaim memory in a timely fashion so that the host free memory stays above the soft threshold.  

If ballooning is not sufficient to reclaim memory or the host free memory drops towards the hard threshold, 
the hypervisor starts to use swapping in addition to using ballooning. During swapping, memory 
compression is activated as well. With host swapping and memory compression, the hypervisor should be 
able to quickly reclaim memory and bring the host memory state back to the soft state. 

In a rare case where host free memory drops below the low threshold, the hypervisor continues to reclaim 
memory through swapping and memory compression, and additionally blocks the execution of all virtual 
machines that consume more memory than their target memory allocations. 

In certain scenarios, host memory reclamation happens regardless of the current host free memory state. For 
example, even if host free memory is in the high state, memory reclamation is still mandatory when a virtual 
machine’s memory usage exceeds its specified memory limit. If this happens, the hypervisor will employ 
ballooning and, if necessary, swapping and memory compression to reclaim memory from the virtual 
machine until the virtual machine’s host memory usage falls back to its specified limit. 

4. ESX Memory Allocation Management for Multiple Virtual Machines 
This section describes how ESX allocates host memory to multiple virtual machines, especially when the 
host memory is overcommitted.  

ESX employs a share-based allocation algorithm to achieve efficient memory utilization for all virtual 
machines and to guarantee memory to those virtual machines which need it most. [1]   

ESX provides three configurable parameters to control the host memory allocation for a virtual machine: 
Shares, Reservation, and Limit. The interface in the vSphere Client is shown in Figure 9.  
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Figure 9. Configure virtual machine memory allocation 

 

  

Limit is the upper bound of the amount of host physical memory allocated for a virtual machine. By default, 
limit is set to unlimited, which means a virtual machine’s maximum allocated host physical memory is its 
specified virtual machine memory size (according to Equation 1 on page 5). Reservation is a guaranteed 
lower bound on the amount of host physical memory the host reserves for a virtual machine even when host 
memory is overcommitted. Memory Shares entitle a virtual machine to a fraction of available host physical 
memory, based on a proportional-share allocation policy. For example, a virtual machine with twice as 
many shares as another is generally entitled to consume twice as much memory, subject to its limit and 
reservation constraints. 

Periodically, ESX computes a memory allocation target for each virtual machine based on its share-based 
entitlement, its estimated working set size, and its limit and reservation. Here, a virtual machine’s working 
set size is defined as the amount of guest physical memory that is actively being used. When host memory is 
undercommitted, a virtual machine’s memory allocation target is the virtual machine’s consumed host 
physical memory size with headroom. The maximum memory allocation target is: 

Equation 2.  
 
Maximum allocation target = min{ VM’s memory size, VM’s limit }  

When host memory is overcommitted, a virtual machine’s allocation target is somewhere between its 
specified reservation and specified limit depending on the virtual machine’s shares and the system load. If a 
virtual machine’s host memory usage is larger than the computed allocation target, which typically happens 
in memory overcommitment cases, ESX employs a ballooning or swapping mechanism to reclaim memory 
from the virtual machine in order to reach the allocation target. Whether to use ballooning or to use 
swapping is determined by the current host free memory state as described in previous sections. 

Shares play an important role in determining the allocation targets when memory is overcommitted. When 
the hypervisor needs memory, it reclaims memory from the virtual machine that owns the fewest shares-
per-allocated page.  

A significant limitation of the pure proportional-share algorithm is that it does not incorporate any 
information about the actual memory usage of the virtual machine. As a result, some idle virtual machines 
with high shares can retain idle memory unproductively, while some active virtual machines with fewer 
shares suffer from lack of memory. 

ESX resolves this problem by estimating a virtual machine’s working set size and charging a virtual machine 
more for the idle memory than for the actively used memory through an idle tax. [1] A virtual machine’s 
shares-per-allocated page ratio is adjusted to be lower if a fraction of the virtual machine’s memory is idle. 
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Hence, memory will be reclaimed preferentially from the virtual machines that are not fully utilizing their 
allocated memory. The detailed algorithm can be found in Memory Resource Management in VMware ESX 
Server [1], in section 5.2 “Reclaiming Idle Memory.” The effectiveness of this algorithm relies on the accurate 
estimation of the virtual machine’s working set size. ESX uses a statistical sampling approach to estimate the 
aggregate virtual machine working set size without any guest involvement. At the beginning of each 
sampling period, the hypervisor intentionally invalidates several randomly selected guest physical pages 
and starts to monitor the guest accesses to them. At the end of the sampling period, the fraction of actively 
used memory can be estimated as the fraction of the invalidated pages that are re-accessed by the guest 
during the epoch. The detailed algorithm can be found in Memory Resource Management in VMware ESX 
Server [1], in section 5.3 “Measuring Idle Memory.” By default, ESX samples 100 guest physical pages for 
each 60-second period. The sampling rate can be adjusted by changing Mem.SamplePeriod through the 
vSphere Client in Advanced Settings.  

By overpricing the idle memory and effective working set estimation, ESX is able to efficiently allocate host 
memory under memory overcommitment while maintaining the proportional-share allocation. 

5. Performance Evaluation  
In this section, the performance of various ESX memory reclamation techniques is evaluated. The purpose is 
to help users understand how individual techniques impact the performance of various applications.  

5.1 Experimental Environment 
ESX 4.0 RC was installed on a Dell PowerEdge 6950 system and experiments were conducted against 
SPECjbb, Kernel Compile, Swingbench, Exchange, and SharePoint workloads to evaluate page sharing, 
ballooning and host swapping performance. ESX 4.1 RC was installed on a Dell PowerEdge R710 system to 
evaluate the memory compression feature using SharePoint and Swingbench workloads. The system 
hardware configurations and workload descriptions are summarized in Table 1 and Table 2 respectively.  

Table 1. Server configurations 

PowerEdge 6950 Processor:  4 socket dual core AMD Opteron 8222SE processors @ 3GHZ 

Memory: 64GB DDR2 

PowerEdge R710 Processor: 2 quad-core Intel Xeon X5570 (Nehalem) processors @ 2.93GHz, 
with hyper-threading 

Memory: 96GB DDR3 

SAN Storage LUN Size: 2TB Fibre Channel  

 

Table 2. Workload descriptions 

SPECjbb2005 Heap Size: 2.5GB 

Number of Warehouse: 1 

Run Time: 10 minutes 

VM configuration:  1vcpu, 4GB memory 
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Kernel Compile Linux Kernel Version: 2.6.17 

Command: “make –j 1 bzimage > /dev/null” 

VM configuration: 1vcpu, 512MB memory 

Swingbench Database: Oracle 11g 

Functional benchmark: Order Entry 

Run time: 20 minutes 

VM configuration: 4 vcpus,  5GB memory 

Exchange 2007 Server: Microsoft Exchange 2007 

LoadGen client: 2000 heavy exchange users 

VM configuration: 4vcpus, 12GB memory 

SharePoint 2007 SQL Server: SQL server 2008 SP1 with 200GB Sharepoint user data 

Web Server: Windows Server 2008 with Web Server and Query 
Server roles enabled 

Application Server: Index server 

VM configurations: 3 Web Server VMs (2vcpu, 4GB memory) 

1 Application Server VM (2vcpu, 4GB memory) 

1 SQL Server VM (2vcpu, 16GB memory) 

 

The guest operating system running inside the SPECjbb, kernel compile, and Swingbench virtual machines 
was 64-bit Red Hat Enterprise Linux 5.2 Server. The guest operating system running inside the Exchange 
virtual machine and SharePoint VMs was Windows Server 2008.  

For SPECjbb2005 and Swingbench, the throughput was measured by calculating the number of transactions 
per second. For kernel compile, the performance was measured by calculating the inverse of the compilation 
time. For Exchange, the performance was measured using the average Remote Procedure Call (RPC) 
latency. For SharePoint, the performance was measured using the number of requests per second. In 
addition, for Swingbench, Exchange and SharePoint, the client applications were installed in a separate 
native machine. 

5.2 Transparent Page Sharing Performance 
In this experiment, two instances of workloads were run. The overall performance of workloads with page 
sharing enabled is compared to that with page sharing disabled. The focus is on evaluating the overhead of 
page scanning. Since the page scan rate (number of scanned pages per second) is largely determined by the 
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Mem.ShareScanTime5

Figure 10. Performance impact of transparent page sharing 

, in addition to the default 60 minutes, the minimal Mem.ShareScanTime of 10 
minutes was tested, which potentially introduces the highest page scanning overhead. 

 

  

Figure 10 confirms that enabling page sharing introduces a negligible performance overhead in the default 
setting and only <1 percent overhead when Mem.ShareScanTime is 10 minutes for all workloads.  

Page sharing sometimes improves performance because the virtual machine’s host memory footprint is 
reduced so that it fits the processor cache better. 

Besides page scanning, breaking copy-on-right (CoW) pages is another source of page sharing overhead. 
Unfortunately, such overhead is highly application dependent and it is difficult to evaluate it through 
configurable options. Therefore, the overhead of breaking CoW pages was omitted in this experiment.  

5.3 Ballooning vs. Host Swapping 
In the following experiments, VM memory reclamation was enforced by changing each virtual machine’s 
memory limit value from the default of unlimited, to values that are smaller than the configured virtual 
machine memory size. Page sharing was turned off to isolate the performance impact of ballooning or 
swapping. Since the host memory is much larger than the virtual machine memory size, the host free 
memory is always in the high state. Hence, by default, ESX only uses ballooning to reclaim memory. Both  
ballooning  and memory compression were turned off to obtain the performance of using swapping only. 
The ballooned and swapped memory sizes were also collected when the virtual machine ran steadily.  

5.3.1 Linux Kernel Compile 

Figure 10 presents the throughput of the kernel compile workload with different memory limits when using 
ballooning or swapping. This experiment was contrived to use only ballooning or swapping, not both. 
While this case will not often occur in production environments, it shows the performance penalty due to 

                                                                 
5 This is an advanced setting, shown in Figure 5 on page 8.  
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either technology on its own. The throughput is normalized to the case where virtual machine memory is 
not reclaimed. 

Figure 11. Performance of kernel compile when using the ballooning vs. the swapping 

  

By using ballooning, the kernel compile virtual machine only suffers from 3 percent throughput loss even 
when the memory limit is as low as 128MB (1/4 of the configured virtual machine memory size). This is 
because the kernel compile workload has very little memory reuse and most of the guest physical memory 
is used as buffer caches for the kernel source files. With ballooning, the guest operating system reclaims 
guest physical memory upon the balloon driver’s allocation request by dropping the buffer pages instead of 
paging them out to the guest virtual swap device. Because dropped buffer pages are not reused frequently, 
the performance impact of using ballooning is trivial. 

However, with hypervisor swapping, the selected guest buffer pages are unnecessarily swapped out to the 
host swap device and some guest kernel pages are swapped out occasionally, making the performance of 
the virtual machine degrade when the memory limit decreases. When the memory limit is 128MB, the 
throughput loss is about 34 percent in the swapping case. Balloon inflation is a better approach to memory 
reclamation from a performance perspective. 

Figure 11 illustrates that as the memory limit decreases, the ballooned and swapped memory sizes increase 
almost linearly. There is a difference between the ballooned memory size and the swapped memory size. In 
the ballooning cases, when virtual machine memory usage exceeds the specified limit, the balloon driver 
cannot force the guest operating system to page out guest physical pages immediately unless the balloon 
driver has used up most of the free guest physical memory, which puts the guest operating system under 
memory pressure. In the swapping cases, however, as long as the virtual machine memory usage exceeds 
the specified limit, the extra amount of pages will be swapped out immediately. Therefore, the ballooned 
memory size is roughly equal to the virtual machine memory size minus the specified limit, which means 
that the free physical memory is included. The swapped memory size is roughly equal to the virtual 
machine host memory usage minus the specified limit. In the kernel compile virtual machine, since most of 
the guest physical pages are used to buffer the workload files, the virtual machine’s effective host memory 
usage is close to the virtual machine memory size. Hence, the swapped memory size is similar to the 
ballooned memory size. 
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5.3.2 Oracle/Swingbench 

Figure 12 presents the throughput of an Oracle database tested by the Swingbench workload with different 
memory limits when using ballooning vs. swapping. The throughput is normalized to the case where virtual 
machine memory is not reclaimed. 

Figure 12. Performance of Swingbench when using ballooning vs. swapping 

  

As shown in the kernel compile test, using ballooning barely impacts the throughput of the Swingbench 
virtual machine until the memory limit decreases below 2048MB. This occurs when the guest operating 
system starts to page out the physical pages that are heavily reused by the Oracle database.  

In contrast to ballooning, any amount of swapping causes significant throughput penalty. The throughput 
loss is already 17 percent when the memory limit is 3584MB. In hypervisor swapping, some guest buffer 
pages are unnecessarily swapped out and some guest kernel or performance-critical database pages are also 
unintentionally swapped out because of the random page selection policy. For the Swingbench virtual 
machine, the virtual machine host memory usage is very close to the virtual machine memory size, so the 
swapped memory size is very close to the ballooned memory size. 

 

5.3.3 SPECjbb  

Figure 13 presents the throughput of the SPECjbb workload with different memory limits when using 
ballooning vs. swapping.  

The throughput is normalized to the case where virtual machine memory is not reclaimed. 
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Figure 13. Performance of SPECjbb when using ballooning vs. swapping 

  

From this figure, it is seen that when the virtual machine memory limit decreases beyond 2816MB, the 
throughput of SPECjbb degrades significantly in both ballooning and swapping cases. When the memory 
limit is reduced to 2048MB, the throughput losses are 89 percent and 96 percent for ballooning and 
swapping respectively. Since the configured JVM heap size is 2.5GB, the actual virtual machine working set 
size is around 2.5GB plus guest operating system memory usage (about 300MB). When the virtual machine 
memory limit falls below 2816MB, the host memory cannot back the entire virtual machine’s working set, so 
that virtual machine starts to suffer from guest-level paging in the ballooning cases or hypervisor swapping 
in the swapping cases. 

Since SPECjbb is an extremely memory intensive workload, its throughput is largely determined by the 
virtual machine memory hit rate. In this instance, virtual machine memory hit rate is defined as the 
percentage of guest memory accesses that result in host physical memory hits. A higher memory hit rate 
means higher throughput for the SPECjbb workload. Since ballooning and host swapping similarly decrease 
memory hit rate, both guest level paging and hypervisor swapping largely hurt SPECjbb performance.  

Surprisingly, when the memory limit is 2506MB or 2304MB, swapping yields higher throughput than 
ballooning does. This seems to be counterintuitive because hypervisor swapping typically causes a higher 
performance penalty. One reasonable explanation is that the random page selection policy used in 
hypervisor swapping largely favors the access patterns of the SPECjbb virtual machine. More specifically, 
with ballooning, when the guest operating system (Linux in this case) pages out guest physical pages to 
satisfy the balloon driver’s allocation request, it chooses the pages using an LRU-approximated6

                                                                 
6 LRU refers to “least recently used.” LRU is a caching policy that determines how pages are discarded when the cache is full and a 
new page must be accepted into the cache. LRU specifies that the least recently used page is discarded.  

 policy. 
However,  JVM  often scans  the allocated guest physical memory ( Java heap) for garbage collection 
purpose. This behavior may fall into a well-known LRU pathological case in which the memory hit rate 
drops dramatically even when the memory size is slightly smaller than the working set size. In contrast, 
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when using hypervisor swapping, the swapped physical pages are randomly selected by the hypervisor, 
which makes the memory hit rate reduce more gradually as the memory limit decreases. That is why using 
swapping achieves higher throughput when the memory limit is smaller than the virtual machine’s working 
set size. However, when the memory limit drops to 2304MB, the virtual machine memory hit rate is 
equivalently low in both swapping and ballooning cases. Using swapping starts to cause worse performance 
compared to using ballooning. Note that the above two configurations where swapping outperforms 
ballooning are rare pathological cases for ballooning performance. In most cases, using ballooning achieves 
much better performance compared to using swapping. 

Since the virtual machine’s working set size (~2.8GB) is much smaller than the configured virtual machine 
memory size (4GB), the ballooned memory size is much higher than the swapped memory size.  

5.3.4 Microsoft Exchange Server 2007 

This section presents how ballooning and swapping impact the performance of an Exchange Server virtual 
machine. Exchange Sever is a memory intensive workload that is optimized to use all the available physical 
memory to cache the transactions for fewer disk I/Os.  

The Exchange Server performance was measured using the average Remote Procedure Call (RPC) latency 
during two hours of stable performance. The RPC latency gauges the server processing time for an RPC 
from LoadGen (the client application that drives the Exchange server). Therefore, lower RPC latency means 
better performance. The results are presented in Figure 14.  

Figure 14. Average RPC latency of Exchange when using ballooning vs. using swapping 

  

Figure 14 (a), illustrates that when the memory limit decreases from 12GB to 3GB, the average RPC latency 
is gradually increased from 4.6ms to 7.3ms with ballooning. However, as shown in Figure 14 (b), the RPC 
latency is dramatically increased from 4.6ms to 143ms when solely swapping out 2GB host memory. When 
the memory limit is reduced to 9GB, hypervisor swapping makes the RPC latency too high, which resulted 
in the failure of the LoadGen application (due to timeout).  

Overall, this figure confirms that using ballooning to reclaim memory is much more efficient than using 
hypervisor swapping for the Exchange Server virtual machine.  

 



Understanding Memory Resource Management in VMware ESX 4.1 

VMware, Inc                                                                                                                                                                                                                        22 

5.4 Memory Compression Performance 
In this experiment, host memory overcommitment is enforced by reducing the host physical memory size 
instead of setting the VM memory limit. The maximum compression cache size is fixed at 10% of configured 
guest memory size. 

5.4.1 SharePoint 

SharePoint Sever is composed of five VMs with a total VM memory size of 32GB. The SQL server VM is 
given a full 16GB memory reservation because any memory reclamation through ballooning or swapping 
from this VM will make the SharePoint performance degrade significantly. No reservations are set for the 
other four VMs. In addition, all the memory reclamation techniques are enabled as default.  Figure 15 
presents how memory compression helps improve the SharePoint performance when host memory size is 
reduced. The performance result is normalized to the 36GB case where the host memory is undercomitted. 

Figure 15. Throughput and Swap Read rate of SharePoint with different host memory sizes 
 

 

  

As shown in Figure 15, when host memory size is reduced from 36GB to 28GB, there is only 6% 
performance degradation. This is because page sharing and ballooning efficiently reclaim most of VM 
memory with little performance penalty.  There are a few swapping activities when host memory is reduced 
to 28GB and 26GB, but they do not impact performance much.  

However, when host memory is reduced to 26GB, ballooning and page sharing are not enough to reclaim 
host memory. ESX has to swap out guest pages from VMs. Without memory compression, the performance 
loss is 95% because of the severe penalty of host swapping. Interestingly, by using memory compression, the 
performance loss is brought back from 95% to 6%. Such a huge improvement is mainly due to the significant 
reduction in the amount of swapped in pages. As we can see, applying memory compression reduces the 
swap in (swap read) rate by around 85% since most of the missing pages can be found in the compression 
caches.  
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When host memory size is reduced to 24GB, even with memory compression, the throughput drops to 25% 
of the throughput in the 36GB case because the amount of swapped in pages is considerably increased. By 
checking the compression cache statistics, we found that compression caches of those VMs reached their 
maximum limit size in this case.  

5.4.2 Swingbench 

In this experiment, 16 Swingbench VMs were used to overcommit the host memory and none of the VMs 
had any memory reservation. The total VM configured memory size was 80GB. Figure 16 shows the 
normalized overall throughput of Swingbench with memory compression versus without memory 
compression when host memory size is reduced from 96GB to 50GB. The performance result is normalized 
to the 96GB case.  Each of the 16 VMs had the same copy of the database installed, which led to artificial 
page sharing and made the impact of memory compression less obvious. So for benchmarking purposes, we 
temporarily turned off page sharing in this experiment.  

From Figure16, we can see that when host memory is reduced from 96GB to 70GB, the performance loss of 
Swingbench is < 5% since ballooning efficiently reclaims the guest pages from the VMs without causing 
severe guest paging. However, when host memory is reduced to 60GB, the memory pressure is high enough 
to make the host start to swap out guest pages. Using memory compression can easily recover 14% lost 
throughput. Again, as shown in this figure, the improvement is mainly due to the significant reduction in 
host page swap in (swap read) operations.  For the same reason, memory compression can bring the 
normalized throughput from 42% to 70% when host memory is only 50GB. In this case, even with memory 
compression, there still were considerable swap in operations. Upon close observation, we found that 
although the compression caches of those VMs were not full, there were quite a lot of swapped out pages 
that failed on compression because they could not be compressed into half pages. Hence, memory 
compression cannot completely eliminate host swapping. 

Figure 16. Throughput and Swap Read rate of Swingbench with different host memory sizes 
 

 

Memory compression itself introduces some CPU overhead when performing compression or 
decompression. In this experiment, we found that the physical CPU utilization is slightly increased by 1-2% 
when memory compression is enabled. 
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6. Best Practices 
Based on the memory management concepts and performance evaluation results presented in the previous 
sections, the following are some best practices for host and guest memory usage. 

 Do not disable page sharing or the balloon driver. As described, page sharing is a lightweight technique 
which opportunistically reclaims redundant host memory with trivial performance impact. In the cases 
where hosts are heavily overcommitted, using ballooning is generally more efficient and safer than 
using hypervisor swapping, based on the results presented in Section 5.3. These two techniques are 
enabled by default in ESX 4 and should not be disabled unless application testing shows that the 
benefits of doing so clearly outweigh the costs. 

 Carefully specify memory limits and reservations. The virtual machine memory allocation target is 
subject to the VM’s memory limit and reservation. If these two parameters are misconfigured, users 
may observe ballooning or swapping even when the host has plenty of free memory. For example, a 
virtual machine’s memory may be reclaimed when the specified limit is too small or when other virtual 
machines reserve too much host memory, even though they may only use a small portion of the 
reserved memory. If a performance-critical virtual machine needs a guaranteed memory allocation, the 
reservation needs to be specified carefully because it may impact other virtual machines. 

 Host memory size should be larger than guest memory usage. For example, it is unwise to run a virtual 
machine with a 2GB working set size in a host with only 1GB host memory. If this is the case, the 
hypervisor has to reclaim the virtual machine’s active memory through ballooning or hypervisor 
swapping, which will lead to potentially serious virtual machine performance degradation. Although it 
is difficult to tell whether the host memory is large enough to hold all of the virtual machines’ working 
sets, the bottom line is that the host memory should not be excessively overcommitted making the 
guests have to continuously page out guest physical memory. 

 Use shares to adjust relative priorities when memory is overcommitted. If the host’s memory is 
overcommitted and the virtual machine’s allocated host memory is too small to achieve a reasonable 
performance, adjust the virtual machine’s shares to escalate the relative priority of the virtual machine 
so that the hypervisor will allocate more host memory for that virtual machine. 

 Set an appropriate virtual machine memory size. The virtual machine memory size should be slightly 
larger than the average guest memory usage. The extra memory will accommodate workload spikes in 
the virtual machine. Note that the guest operating system only recognizes the specified virtual machine 
memory size. If the virtual machine memory size is too small, guest-level paging is inevitable, even 
though the host may have plenty of free memory. If the virtual machine memory size is set to a very 
large value,  virtual machine performance will be fine, but more virtual machine memory means that 
more overhead memory needs to be reserved for the virtual machine. 
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