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Understanding Memory Resource
Management in VMware ESX 4.1

VMware ESX 4.1

VMware® ESX™ is a hypervisor designed to efficiently manage hardware resources including CPU,
memory, storage, and network among multiple, concurrent virtual machines. This paper describes the basic
memory management concepts in ESX, the configuration options available, and provides results to show the
performance impact of these options. The focus of this paper is in presenting the fundamental concepts of
these options. !

This paper is organized as follows:

B Section 1. “Introduction” on page 1

B Section 2. “ESX Memory Management Overview” on page 2

B Section 3. “Memory Reclamation in ESX” on page 5

B Section 4. “ESX Memory Allocation Management for Multiple Virtual Machines” on page 13
B Section 5. “Performance Evaluation” on page 15

B Section 6. “Best Practices” on page 24

B Section 7. “References” on page 25

Memory compression is a new feature for VMware ESX 4.1 and is covered in Section 3.5, “Memory
Compression” on page 10 and Section 5.4, “Memory Compression Performance” on page 22.

Introduction

ESX uses high-level resource management policies to compute a target memory allocation for each virtual
machine (VM) based on the current system load and parameter settings for the virtual machine (shares,
reservation, and limit [2]). The computed target allocation is used to guide the dynamic adjustment of the
memory allocation for each virtual machine. In the cases where host memory is overcommitted, the target
allocations are still achieved by invoking several lower-level mechanisms to reclaim memory from virtual
machines.

This paper assumes a pure virtualization environment in which the guest operating system running inside
the virtual machine is not modified to facilitate virtualization (often referred to as paravirtualization).
Knowledge of ESX architecture will help you understand the concepts presented in this paper.

1 More details can be found in Memory Resource Management in VMuware ESX Server [1].
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The VMware vSphere™ Client exposes several memory statistics in the performance charts. Among them
are charts for the following memory types: consumed, active, shared, granted, overhead, balloon, swapped,
and compressed.. A complete discussion about these metrics can be found in “Memory Performance Chart
Metrics in the vSphere Client” [3] and “VirtualCenter Memory Statistics Definitions” [4].

Two important memory statistics are Consumed Memory and Active Memory. You can use the charts for
these statistics to quickly monitor the host memory and virtual machine memory usage.

Figure 1. Host and Active Memory usage in vSphere Client Performance Charts
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Consumed Memory usage is defined as the amount of host memory that is allocated to the virtual machine,
Active Memory is defined as the amount of guest memory that is currently being used by the guest
operating system and its applications. These two statistics are quite useful for analyzing the memory status
of the virtual machine and providing hints to address potential performance issues.

This paper helps answer these questions:

B Why is the Consumed Memory so high?

B Why is the Consumed Memory usage sometimes much larger than the Active Memory?
B Why is the Active Memory different from what is seen inside the guest operating system?

These questions cannot be easily answered without understanding the basic memory management concepts
in ESX. Understanding how ESX manages memory will also make the performance implications of changing
ESX memory management parameters clearer.

2. ESX Memory Management Overview

2.1 Terminology
The following terminology is used throughout this paper.

B Host physical memory? refers to the memory that is visible to the hypervisor as available on the system.

2 The terms host physical memory and host memory are used interchangeably in this paper. They are also equivalent to the term
machine memory used in “Memory Resource Management in VMware ESX Server” [1].
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B Guest physical memory refers to the memory that is visible to the guest operating system running in the
virtual machine.

B Guest virtual memory refers to a continuous virtual address space presented by the guest operating
system to applications. It is the memory that is visible to the applications running inside the virtual
machine.

B Guest physical memory is backed by host physical memory, which means the hypervisor provides a
mapping from the guest to the host memory.

B The memory transfer between the guest physical memory and the guest swap device is referred to as
guest level paging and is driven by the guest operating system. The memory transfer between guest
physical memory and the host swap device is referred to as hypervisor swapping, which is driven by
the hypervisor.

2.2 Memory Virtualization Basics

Virtual memory is a well-known technique used in most general-purpose operating systems, and almost all
modern processors have hardware to support it. Virtual memory creates a uniform virtual address space for
applications and allows the operating system and hardware to handle the address translation between the
virtual address space and the physical address space. This technique not only simplifies the programmer’s
work, but also adapts the execution environment to support large address spaces, process protection, file
mapping, and swapping in modern computer systems.

When running a virtual machine, the hypervisor creates a contiguous addressable memory space for the
virtual machine. This memory space has the same properties as the virtual address space presented to the
applications by the guest operating system. This allows the hypervisor to run multiple virtual machines
simultaneously while protecting the memory of each virtual machine from being accessed by others.
Therefore, from the view of the application running inside the virtual machine, the hypervisor adds an extra
level of address translation that maps the guest physical address to the host physical address. As a result,
there are three virtual memory layers in ESX: guest virtual memory, guest physical memory, and host
physical memory. Their relationships are illustrated in Figure 2 (a).

Figure 2. Virtual memory levels (a) and memory address translation (b) in ESX
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As shown in Figure 2 (b), in ESX, the address translation between guest physical memory and host physical
memory is maintained by the hypervisor using a physical memory mapping data structure, or pmap, for
each virtual machine. The hypervisor intercepts all virtual machine instructions that manipulate the
hardware translation lookaside buffer (TLB) contents or guest operating system page tables, which contain
the virtual to physical address mapping. The actual hardware TLB state is updated based on the separate
shadow page tables, which contain the guest virtual to host physical address mapping. The shadow page
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tables maintain consistency with the guest virtual to guest physical address mapping in the guest page
tables and the guest physical to host physical address mapping in the pmap data structure. This approach
removes the virtualization overhead for the virtual machine’s normal memory accesses because the
hardware TLB will cache the direct guest virtual to host physical memory address translations read from the
shadow page tables. Note that the extra level of guest physical to host physical memory indirection is
extremely powerful in the virtualization environment. For example, ESX can easily remap a virtual
machine’s host physical memory to files or other devices in a manner that is completely transparent to the
virtual machine.

Recently, some new generation CPUs, such as third generation AMD Opteron and Intel Xeon 5500 series
processors, have provided hardware support for memory virtualization by using two layers of page tables
in hardware. One layer stores the guest virtual to guest physical memory address translation, and the other
layer stores the guest physical to host physical memory address translation. These two page tables are
synchronized using processor hardware. Support for hardware memory virtualization eliminates the
overhead required to keep shadow page tables in synchronization with guest page tables in software
memory virtualization. For more information about hardware-assisted memory virtualization, see
“Performance Evaluation of Intel EPT Hardware Assist” [5] and “Performance Evaluation of AMD RVI
Hardware Assist.” [6]

2.3 Memory Management Basics in ESX

Prior to talking about how ESX manages memory for virtual machines, it is useful to first understand how
the application, guest operating system, hypervisor, and virtual machine manage memory at their respective
layers.

B An application starts and uses the interfaces provided by the operating system to explicitly allocate or
deallocate virtual memory during its execution.

B In anon-virtual environment, the operating system assumes it owns all physical memory in the system.
The hardware does not provide interfaces for the operating system to explicitly “allocate” or “free”
physical memory. The operating system establishes the definitions of “allocated” or “free” physical
memory. Different operating systems have different implementations to realize this abstraction. One
example is that the operating system maintains an “allocated” list and a “free” list, so whether or not a
physical page is free depends on which list the page currently resides in.

B Because a virtual machine runs an operating system and several applications, the virtual machine
memory management properties combine both application and operating system memory management
properties. Like an application, when a virtual machine first starts, it has no pre-allocated physical
memory. Like an operating system, the virtual machine cannot explicitly allocate host physical memory
through any standard interface. The hypervisor also creates the definitions of “allocated” and “free”
host memory in its own data structures. The hypervisor intercepts the virtual machine’s memory
accesses and allocates host physical memory for the virtual machine on its first access to the memory. In
order to avoid information leaking among virtual machines, the hypervisor always writes zeroes to the
host physical memory before assigning it to a virtual machine.

B Virtual machine memory deallocation acts just like an operating system, such that the guest operating
system frees a piece of physical memory by adding these memory page numbers to the guest free list,
but the data of the “freed” memory may not be modified at all. As a result, when a particular piece of
guest physical memory is freed, the mapped host physical memory will usually not change its state and
only the guest free list will be changed.

The hypervisor knows when to allocate host physical memory for a virtual machine because the first
memory access from the virtual machine to a host physical memory will cause a page fault that can be easily
captured by the hypervisor. However, it is difficult for the hypervisor to know when to free host physical
memory upon virtual machine memory deallocation because the guest operating system free list is generally
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not publicly accessible. Hence, the hypervisor cannot easily find out the location of the free list and monitor
its changes.

Although the hypervisor cannot reclaim host memory when the operating system frees guest physical
memory, this does not mean that the host memory, no matter how large it is, will be used up by a virtual
machine when the virtual machine repeatedly allocates and frees memory. This is because the hypervisor
does not allocate host physical memory on every virtual machine’s memory allocation. It only allocates host
physical memory when the virtual machine touches the physical memory that it has never touched before. If
a virtual machine frequently allocates and frees memory, presumably the same guest physical memory is
being allocated and freed again and again. Therefore, the hypervisor just allocates host physical memory for
the first memory allocation and then the guest reuses the same host physical memory for the rest of the
allocations. That is, if a virtual machine’s entire guest physical memory (configured memory) has been
backed by the host physical memory, the hypervisor does not need to allocate any host physical memory for
this virtual machine any more. This means that Equation 1 always holds true:

Equation 1.
VM'’s host memory usage <= VM'’s guest memory size + VM'’s overhead memory

Here, the virtual machine’s overhead memory is the extra host memory needed by the hypervisor for
various virtualization data structures besides the memory allocated to the virtual machine. Its size depends
on the number of virtual CPUs and the configured virtual machine memory size. For more information, see
the vSphere Resource Management Guide [2].

3. Memory Reclamation in ESX

ESX uses several innovative techniques to reclaim virtual machine memory, which are:

B Transparent page sharing (TPS)—reclaims memory by removing redundant pages with identical
content

®  Ballooning—reclaims memory by artificially increasing the memory pressure inside the guest

B Hypervisor swapping —reclaims memory by having ESX directly swap out the virtual machine’s
memory

B Memory compression—reclaims memory by compressing the pages that need to be swapped out

The following sections describe these techniques and the motivation behind memory reclamation.

3.1 Motivation

According to Equation 1 above, if the hypervisor cannot reclaim host physical memory upon virtual
machine memory deallocation, it must reserve enough host physical memory to back all virtual machine’s
guest physical memory (plus their overhead memory) in order to prevent any virtual machine from running
out of host physical memory. This means that memory overcommitment cannot be supported. The concept
of memory overcommitment is fairly simple: host memory is overcommitted when the total amount of guest
physical memory of the running virtual machines is larger than the amount of actual host memory. ESX
supports memory overcommitment from the very first version, due to two important benefits it provides:

B Higher memory utilization: With memory overcommitment, ESX ensures that host memory is
consumed by active guest memory as much as possible. Typically, some virtual machines may be
lightly loaded compared to others. Their memory may be used infrequently, so for much of the time
their memory will sit idle. Memory overcommitment allows the hypervisor to use memory reclamation
techniques to take the inactive or unused host physical memory away from the idle virtual machines
and give it to other virtual machines that will actively use it.
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®  Higher consolidation ratio: With memory overcommitment, each virtual machine has a smaller
footprint in host memory usage, making it possible to fit more virtual machines on the host while still
achieving good performance for all virtual machines. For example, as shown in Figure 3, you can enable
a host with 4G host physical memory to run three virtual machines with 2G guest physical memory
each. Without memory overcommitment, only one virtual machine can be run because the hypervisor
cannot reserve host memory for more than one virtual machine, considering that each virtual machine
has overhead memory.

Figure 3. Memory overcommitment in ESX
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In order to effectively support memory overcommitment, the hypervisor must provide efficient host
memory reclamation techniques. ESX leverages several innovative techniques to support virtual machine
memory reclamation. These techniques are transparent page sharing, ballooning, and host swapping. In ESX
4.1, before host swapping, ESX applies a new technique called memory compression in order to reduce the
amount of pages that need to be swapped out, while reclaiming the same amount of host memory.

3.2 Transparent Page Sharing (TPS)

When multiple virtual machines are running, some of them may have identical sets of memory content. This
presents opportunities for sharing memory across virtual machines (as well as sharing within a single
virtual machine). For example, several virtual machines may be running the same guest operating system,
have the same applications, or contain the same user data. With page sharing, the hypervisor can reclaim
the redundant copies and keep only one copy, which is shared by multiple virtual machines in the host
physical memory. As a result, the total virtual machine host memory consumption is reduced and a higher
level of memory overcommitment is possible.

In ESX, the redundant page copies are identified by their contents. This means that pages with identical
content can be shared regardless of when, where, and how those contents are generated. ESX scans the
content of guest physical memory for sharing opportunities. Instead of comparing each byte of a candidate
guest physical page to other pages, an action that is prohibitively expensive, ESX uses hashing to identify
potentially identical pages. The detailed algorithm is illustrated in Figure 4.
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Figure 4. Content-based page sharing in ESX
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A hash value is generated based on the candidate guest physical page’s content. The hash value is then used
as a key to look up a global hash table, in which each entry records a hash value and the physical page
number of a shared page. If the hash value of the candidate guest physical page matches an existing entry, a
full comparison of the page contents is performed to exclude a false match. Once the candidate guest
physical page’s content is confirmed to match the content of an existing shared host physical page, the guest
physical to host physical mapping of the candidate guest physical page is changed to the shared host
physical page, and the redundant host memory copy (the page pointed to by the dashed arrow in Figure 4)
is reclaimed. This remapping is invisible to the virtual machine and inaccessible to the guest operating
system. Because of this invisibility, sensitive information cannot be leaked from one virtual machine to
another.

A standard copy-on-write (CoW) technique is used to handle writes to the shared host physical pages. Any
attempt to write to the shared pages will generate a minor page fault. In the page fault handler, the
hypervisor will transparently create a private copy of the page for the virtual machine and remap the
affected guest physical page to this private copy. In this way, virtual machines can safely modify the shared
pages without disrupting other virtual machines sharing that memory. Note that writing to a shared page
does incur overhead compared to writing to non-shared pages due to the extra work performed in the page
fault handler.

In VMware ESX, the hypervisor scans the guest physical pages randomly with a base scan rate specified by
Mem.ShareScanTime, which specifies the desired time to scan the virtual machine’s entire guest memory.
The maximum number of scanned pages per second in the host and the maximum number of per-virtual
machine scanned pages, (that is, Mem.ShareScanGHz and Mem. ShareRateMax respectively) can also be
specified in ESX advanced settings. An example is shown in Figure 5.
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Figure 5. Configure page sharing in vSphere Client
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The default values of these three parameters are carefully chosen to provide sufficient sharing opportunities
while keeping the CPU overhead negligible. In fact, ESX intelligently adjusts the page scan rate based on the
amount of current shared pages. If the virtual machine’s page sharing opportunity seems to be low, the page
scan rate will be reduced accordingly and vice versa. This optimization further mitigates the overhead of
page sharing.

In hardware-assisted memory virtualization (for example, Intel EPT Hardware Assist and AMD RVI
Hardware Assist [6]) systems, ESX will automatically back guest physical pages with large host physical
pages (2MB contiguous memory region instead of 4KB for regular pages) for better performance due to less
TLB misses. In such systems, ESX will not share those large pages because: 1) the probability of finding two
large pages having identical contents is low, and 2) the overhead of doing a bit-by-bit comparison for a 2MB
page is much larger than for a 4KB page. However, ESX still generates hashes for the 4KB pages within each
large page. Since ESX will not swap out large pages, during host swapping, the large page will be broken
into small pages so that these pre-generated hashes can be used to share the small pages before they are
swapped out. In short, we may not observe any page sharing for hardware-assisted memory virtualization
systems until host memory is overcommitted.

3.3 Ballooning

Ballooning is a completely different memory reclamation technique compared to transparent page sharing.
Before describing the technique, it is helpful to review why the hypervisor needs to reclaim memory from
virtual machines. Due to the virtual machine’s isolation, the guest operating system is not aware that it is
running inside a virtual machine and is not aware of the states of other virtual machines on the same host.
When the hypervisor runs multiple virtual machines and the total amount of the free host memory becomes
low, none of the virtual machines will free guest physical memory because the guest operating system
cannot detect the host’'s memory shortage. Ballooning makes the guest operating system aware of the low
memory status of the host.

In ESX, a balloon driver is loaded into the guest operating system as a pseudo-device driver.3 It has no
external interfaces to the guest operating system and communicates with the hypervisor through a private

3 VMware Tools must be installed in order to enable ballooning. This is recommended for all workloads.
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channel. The balloon driver polls the hypervisor to obtain a target balloon size. If the hypervisor needs to
reclaim virtual machine memory, it sets a proper target balloon size for the balloon driver, making it
“inflate” by allocating guest physical pages within the virtual machine. Figure 6 illustrates the process of the
balloon inflating.

In Figure 6 (a), four guest physical pages are mapped in the host physical memory. Two of the pages are
used by the guest application and the other two pages (marked by stars) are in the guest operating system
free list. Note that since the hypervisor cannot identify the two pages in the guest free list, it cannot reclaim
the host physical pages that are backing them. Assuming the hypervisor needs to reclaim two pages from
the virtual machine, it will set the target balloon size to two pages. After obtaining the target balloon size,
the balloon driver allocates two guest physical pages inside the virtual machine and pins them, as shown in
Figure 6 b. Here, “pinning” is achieved through the guest operating system interface, which ensures that the
pinned pages cannot be paged out to disk under any circumstances. Once the memory is allocated, the
balloon driver notifies the hypervisor about the page numbers of the pinned guest physical memory so that
the hypervisor can reclaim the host physical pages that are backing them. In Figure 6 (b), dashed arrows
point at these pages. The hypervisor can safely reclaim this host physical memory because neither the
balloon driver nor the guest operating system relies on the contents of these pages. This means that no
processes in the virtual machine will intentionally access those pages to read/write any values. Thus, the
hypervisor does not need to allocate host physical memory to store the page contents. If any of these pages
are re-accessed by the virtual machine for some reason, the hypervisor will treat it as a normal virtual
machine memory allocation and allocate a new host physical page for the virtual machine. When the
hypervisor decides to deflate the balloon —by setting a smaller target balloon size —the balloon driver
deallocates the pinned guest physical memory, which releases it for the guest’s applications.

Figure 6. Inflating the balloon in a virtual machine
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Typically, the hypervisor inflates the virtual machine balloon when it is under memory pressure. By
inflating the balloon, a virtual machine consumes less physical memory on the host, but more physical
memory inside the guest. As a result, the hypervisor offloads some of its memory overload to the guest
operating system while slightly loading the virtual machine. That is, the hypervisor transfers the memory
pressure from the host to the virtual machine. Ballooning induces guest memory pressure. In response, the
balloon driver allocates and pins guest physical memory. The guest operating system determines if it needs
to page out guest physical memory to satisfy the balloon driver’s allocation requests. If the virtual machine
has plenty of free guest physical memory, inflating the balloon will induce no paging and will not impact
guest performance. In this case, as illustrated in Figure 6, the balloon driver allocates the free guest physical
memory from the guest free list. Hence, guest-level paging is not necessary. However, if the guest is already
under memory pressure, the guest operating system decides which guest physical pages to be paged out to
the virtual swap device in order to satisfy the balloon driver’s allocation requests. The genius of ballooning
is that it allows the guest operating system to intelligently make the hard decision about which pages to be
paged out without the hypervisor’s involvement.
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For ballooning to work as intended, the guest operating system must install and enable the balloon driver,
which is included in VMware Tools. The guest operating system must have sufficient virtual swap space
configured for guest paging to be possible. Ballooning might not reclaim memory quickly enough to satisfy
host memory demands. In addition, the upper bound of the target balloon size may be imposed by various
guest operating system limitations.

3.4 Hypervisor Swapping

In the cases where ballooning and transparent page sharing are not sufficient to reclaim memory, ESX
employs hypervisor swapping to reclaim memory. At virtual machine startup, the hypervisor creates a
separate swap file for the virtual machine. Then, if necessary, the hypervisor can directly swap out guest
physical memory to the swap file, which frees host physical memory for other virtual machines.

Besides the limitation on the reclaimed memory size, both page sharing and ballooning take time to reclaim
memory. The page-sharing speed depends on the page scan rate and the sharing opportunity. Ballooning
speed relies on the guest operating system’s response time for memory allocation.

In contrast, hypervisor swapping is a guaranteed technique to reclaim a specific amount of memory within a
specific amount of time. However, hypervisor swapping is used as a last resort to reclaim memory from the
virtual machine due to the following limitations on performance:

B Page selection problems: Under certain circumstances, hypervisor swapping may severely penalize
guest performance. This occurs when the hypervisor has no knowledge about which guest physical
pages should be swapped out, and the swapping may cause unintended interactions with the native
memory management policies in the guest operating system.

B Double paging problems: Another known issue is the double paging problem. Assuming the
hypervisor swaps out a guest physical page, it is possible that the guest operating system pages out the
same physical page, if the guest is also under memory pressure. This causes the page to be swapped in
from the hypervisor swap device and immediately to be paged out to the virtual machine’s virtual
swap device.

Page selection and double-paging problems exist because the information needed to avoid them is not
available to the hypervisor.

B High swap-in latency: Swapping in pages is expensive for a VM. If the hypervisor swaps out a guest
page and the guest subsequently accesses that page, the VM will get blocked until the page is swapped
in from disk. High swap-in latency, which can be tens of milliseconds, can severely degrade guest
performance.

ESX mitigates the impact of interacting with guest operating system memory management by randomly
selecting the swapped guest physical pages.

3.5 Memory Compression

The idea of memory compression is very straightforward: if the swapped out pages can be compressed and
stored in a compression cache located in the main memory, the next access to the page only causes a page
decompression which can be an order of magnitude faster than the disk access. With memory compression,
only a few uncompressible pages need to be swapped out if the compression cache is not full. This means
the number of future synchronous swap-in operations will be reduced. Hence, it may improve application
performance significantly when the host is in heavy memory pressure. In ESX 4.1, only the swap candidate
pages will be compressed. This means ESX will not proactively compress guest pages when host swapping
is not necessary. In other words, memory compression does not affect workload performance when host
memory is undercommitted.

3.5.1 Reclaiming Memory Through Compression

Figure 8 illustrates how memory compression reclaims host memory compared to host swapping.
Assuming ESX needs to reclaim two 4KB physical pages from a VM through host swapping, page A and B
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are the selected pages (Figure 8a). With host swapping only, these two pages will be directly swapped to
disk and two physical pages are reclaimed (Figure 8b). However, with memory compression, each swap
candidate page will be compressed and stored using 2KB of space in a per-VM compression cache. Note that
page compression would be much faster than the normal page swap out operation which involves a disk
I/O. Page compression will fail if the compression ratio is less than 50% and the uncompressible pages will
be swapped out. As a result, every successful page compression is accounted for reclaiming 2KB of physical
memory. As illustrated in Figure 8c, pages A and B are compressed and stored as half-pages in the
compression cache. Although both pages are removed from VM guest memory, the actual reclaimed
memory size is one page.

Figure 8. Host swapping vs. memory compression in ESX
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If any of the subsequent memory access misses in the VM guest memory, the compression cache will be
checked first using the host physical page number. If the page is found in the compression cache, it will be
decompressed and push back to the guest memory. This page is then removed from the compression cache.
Otherwise, the memory request is sent to the host swap device and the VM is blocked.

3.5.2 Managing Per-VM Compression Cache

The per-VM compression cache is accounted for by the VM’s guest memory usage, which means ESX will
not allocate additional host physical memory to store the compressed pages. The compression cache is
transparent to the guest OS. Its size starts with zero when host memory is undercommitted and grows when
virtual machine memory starts to be swapped out.

If the compression cache is full, one compressed page must be replaced in order to make room for a new
compressed page. An age-based replacement policy is used to choose the target page. The target page will
be decompressed and swapped out. ESX will not swap out compressed pages.

If the pages belonging to compression cache need to be swapped out under severe memory pressure, the
compression cache size is reduced and the affected compressed pages are decompressed and swapped out.

The maximum compression cache size is important for maintaining good VM performance. If the upper
bound is too small, a lot of replaced compressed pages must be decompressed and swapped out. Any
following swap-ins of those pages will hurt VM performance. However, since compression cache is
accounted for by the VM's guest memory usage, a very large compression cache may waste VM memory
and unnecessarily create VM memory pressure especially when most compressed pages would not be
touched in the future. In ESX 4.1, the default maximum compression cache size is conservatively set to 10%
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of configured VM memory size. This value can be changed through the vSphere Client in Advanced Settings
by changing the value for Mem.MemZipMaxPct.

Figure 7. Change the maximum compression cache size in the vSphere Client

) Advanced Settings x|
- Annotations Al Memary reservation saved by sharing ¥MX best with YisorFS -
- BufferCache
o TN Min: 0 Max: 16

[+~ Config
- Cpu Mem. MemZipEnable 1
- DataMaver
.. DirentryCache Enable the memory compression cache
- Disk Min: 0 Max: 1
. F55
- FT .
Mem, MemZipMaxPct 10
- Irg
- LPage Sets the maximum size for the compression cache as a percentage of configured ¥ memoary size
:
- Migrate Min: 5 Max: 100
- Misc
- NFS Mem, MemZipMaxallocPct =]
o Mek
. Mura Sets the maximumn size for the compression cache as a percentage of allocabed WM memory size
- Power Min: S Max: 100
- RdmFilkey
gcr..atchCDnﬁg T | Mem.MemZipLowMenmMaxSwapOut 75 J
- Sesi
(- Syslog Mainum nurmber of pages to swap out from the compression cache when in the low mem skate
- User
- Uservars x| min: 10 Max: 200 d
0k I Cancel Help |
A

3.6 When to Reclaim Host Memory*

ESX maintains four host free memory states: high, soft, hard, and low, which are reflected by four
thresholds: 6%, 4%, 2%, and 1% of host memory respectively. Figure 8 shows how the host free memory
state is reported in esxtop.

By default, ESX enables page sharing since it opportunistically “frees” host memory with little overhead.
When to use ballooning or swapping (which activates memory compression) to reclaim host memory is
largely determined by the current host free memory state.

4 The discussions and conclusions made in this section may not be valid when the user specifies a resource pool for virtual
machines. For example, if the resource pool that contains a virtual machine is specified as a small memory limit, ballooning or
hypervisor swapping occur for the virtual machine even when the host free memory is in the high state. The detailed explanation of
resource pool is beyond the scope of this paper. Most of the details can be found in the “Managing Resource Pools” section of the
vSphere Resource Management Guide [2].
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Figure 8. Host free memory state in esxtop
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In the high state, the aggregate virtual machine guest memory usage is smaller than the host memory size.
Whether or not host memory is overcommitted, the hypervisor will not reclaim memory through ballooning
or swapping. (This is true only when the virtual machine memory limit is not set.)

If host free memory drops towards the soft threshold, the hypervisor starts to reclaim memory using
ballooning. Ballooning happens before free memory actually reaches the soft threshold because it takes time
for the balloon driver to allocate and pin guest physical memory. Usually, the balloon driver is able to
reclaim memory in a timely fashion so that the host free memory stays above the soft threshold.

If ballooning is not sufficient to reclaim memory or the host free memory drops towards the hard threshold,
the hypervisor starts to use swapping in addition to using ballooning. During swapping, memory
compression is activated as well. With host swapping and memory compression, the hypervisor should be
able to quickly reclaim memory and bring the host memory state back to the soft state.

In a rare case where host free memory drops below the low threshold, the hypervisor continues to reclaim
memory through swapping and memory compression, and additionally blocks the execution of all virtual
machines that consume more memory than their target memory allocations.

In certain scenarios, host memory reclamation happens regardless of the current host free memory state. For
example, even if host free memory is in the high state, memory reclamation is still mandatory when a virtual
machine’s memory usage exceeds its specified memory limit. If this happens, the hypervisor will employ
ballooning and, if necessary, swapping and memory compression to reclaim memory from the virtual
machine until the virtual machine’s host memory usage falls back to its specified limit.

4. ESX Memory Allocation Management for Multiple Virtual Machines

This section describes how ESX allocates host memory to multiple virtual machines, especially when the
host memory is overcommitted.

ESX employs a share-based allocation algorithm to achieve efficient memory utilization for all virtual
machines and to guarantee memory to those virtual machines which need it most. [1]

ESX provides three configurable parameters to control the host memory allocation for a virtual machine:
Shares, Reservation, and Limit. The interface in the vSphere Client is shown in Figure 9.
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Figure 9. Configure virtual machine memory allocation
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Limit is the upper bound of the amount of host physical memory allocated for a virtual machine. By default,
limit is set to unlimited, which means a virtual machine’s maximum allocated host physical memory is its
specified virtual machine memory size (according to Equation 1 on page 5). Reservation is a guaranteed
lower bound on the amount of host physical memory the host reserves for a virtual machine even when host
memory is overcommitted. Memory Shares entitle a virtual machine to a fraction of available host physical
memory, based on a proportional-share allocation policy. For example, a virtual machine with twice as
many shares as another is generally entitled to consume twice as much memory, subject to its limit and
reservation constraints.

Periodically, ESX computes a memory allocation target for each virtual machine based on its share-based
entitlement, its estimated working set size, and its limit and reservation. Here, a virtual machine’s working
set size is defined as the amount of guest physical memory that is actively being used. When host memory is
undercommitted, a virtual machine’s memory allocation target is the virtual machine’s consumed host
physical memory size with headroom. The maximum memory allocation target is:

Equation 2.

Maximum allocation target = min{ VM’s memory size, VM'’s limit }

When host memory is overcommitted, a virtual machine’s allocation target is somewhere between its
specified reservation and specified limit depending on the virtual machine’s shares and the system load. If a
virtual machine’s host memory usage is larger than the computed allocation target, which typically happens
in memory overcommitment cases, ESX employs a ballooning or swapping mechanism to reclaim memory
from the virtual machine in order to reach the allocation target. Whether to use ballooning or to use
swapping is determined by the current host free memory state as described in previous sections.

Shares play an important role in determining the allocation targets when memory is overcommitted. When
the hypervisor needs memory, it reclaims memory from the virtual machine that owns the fewest shares-
per-allocated page.

A significant limitation of the pure proportional-share algorithm is that it does not incorporate any
information about the actual memory usage of the virtual machine. As a result, some idle virtual machines
with high shares can retain idle memory unproductively, while some active virtual machines with fewer
shares suffer from lack of memory.

ESX resolves this problem by estimating a virtual machine’s working set size and charging a virtual machine
more for the idle memory than for the actively used memory through an idle tax. [1] A virtual machine’s
shares-per-allocated page ratio is adjusted to be lower if a fraction of the virtual machine’s memory is idle.
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Hence, memory will be reclaimed preferentially from the virtual machines that are not fully utilizing their
allocated memory. The detailed algorithm can be found in Memory Resource Management in VMware ESX
Server [1], in section 5.2 “Reclaiming Idle Memory.” The effectiveness of this algorithm relies on the accurate
estimation of the virtual machine’s working set size. ESX uses a statistical sampling approach to estimate the
aggregate virtual machine working set size without any guest involvement. At the beginning of each
sampling period, the hypervisor intentionally invalidates several randomly selected guest physical pages
and starts to monitor the guest accesses to them. At the end of the sampling period, the fraction of actively
used memory can be estimated as the fraction of the invalidated pages that are re-accessed by the guest
during the epoch. The detailed algorithm can be found in Memory Resource Management in VMware ESX
Server [1], in section 5.3 “Measuring Idle Memory.” By default, ESX samples 100 guest physical pages for
each 60-second period. The sampling rate can be adjusted by changing Mem. SamplePeriod through the
vSphere Client in Advanced Settings.

By overpricing the idle memory and effective working set estimation, ESX is able to efficiently allocate host
memory under memory overcommitment while maintaining the proportional-share allocation.

5. Performance Evaluation

In this section, the performance of various ESX memory reclamation techniques is evaluated. The purpose is
to help users understand how individual techniques impact the performance of various applications.

5.1 Experimental Environment

ESX 4.0 RC was installed on a Dell PowerEdge 6950 system and experiments were conducted against
SPECjbb, Kernel Compile, Swingbench, Exchange, and SharePoint workloads to evaluate page sharing,
ballooning and host swapping performance. ESX 4.1 RC was installed on a Dell PowerEdge R710 system to
evaluate the memory compression feature using SharePoint and Swingbench workloads. The system
hardware configurations and workload descriptions are summarized in Table 1 and Table 2 respectively.

Table 1. Server configurations

PowerEdge 6950 Processor: 4 socket dual core AMD Opteron 8222SE processors @ 3GHZ
Memory: 64GB DDR2
PowerEdge R710 Processor: 2 quad-core Intel Xeon X5570 (Nehalem) processors @ 2.93GHz,

with hyper-threading

Memory: 96GB DDR3

SAN Storage LUN Size: 2TB Fibre Channel

Table 2. Workload descriptions

SPECjbb2005 Heap Size: 2.5GB
Number of Warehouse: 1
Run Time: 10 minutes
VM configuration: 1vcpu, 4GB memory
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Kernel Compile

Linux Kernel Version:

2.6.17

Command:

“make —j 1 bzimage > /dev/null”

VM configuration:

lvcpu, 512MB memory

Swingbench Database: Oracle 11g
Functional benchmark: Order Entry
Run time: 20 minutes
VM configuration: 4 vcpus, 5GB memory
Exchange 2007 Server: Microsoft Exchange 2007
LoadGen client: 2000 heavy exchange users
VM configuration: 4vcpus, 12GB memory
SharePoint 2007 SQL Server: SQL server 2008 SP1 with 200GB Sharepoint user data
Web Server: Windows Server 2008 with Web Server and Query

Server roles enabled

Application Server:

Index server

VM configurations:

3 Web Server VMs (2vcpu, 4GB memory)
1 Application Server VM (2vcpu, 4GB memory)
1 SQL Server VM (2vcpu, 16GB memory)

The guest operating system running inside the SPECjbb, kernel compile, and Swingbench virtual machines
was 64-bit Red Hat Enterprise Linux 5.2 Server. The guest operating system running inside the Exchange
virtual machine and SharePoint VMs was Windows Server 2008.

For SPECjbb2005 and Swingbench, the throughput was measured by calculating the number of transactions
per second. For kernel compile, the performance was measured by calculating the inverse of the compilation
time. For Exchange, the performance was measured using the average Remote Procedure Call (RPC)
latency. For SharePoint, the performance was measured using the number of requests per second. In
addition, for Swingbench, Exchange and SharePoint, the client applications were installed in a separate

native machine.

5.2 Transparent Page Sharing Performance

In this experiment, two instances of workloads were run. The overall performance of workloads with page
sharing enabled is compared to that with page sharing disabled. The focus is on evaluating the overhead of
page scanning. Since the page scan rate (number of scanned pages per second) is largely determined by the
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Mem.ShareScanTime?, in addition to the default 60 minutes, the minimal Mem.ShareScanTime of 10
minutes was tested, which potentially introduces the highest page scanning overhead.

Figure 10. Performance impact of transparent page sharing
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Figure 10 confirms that enabling page sharing introduces a negligible performance overhead in the default
setting and only <1 percent overhead when Mem. ShareScanTime is 10 minutes for all workloads.

Page sharing sometimes improves performance because the virtual machine’s host memory footprint is
reduced so that it fits the processor cache better.

Besides page scanning, breaking copy-on-right (CoW) pages is another source of page sharing overhead.
Unfortunately, such overhead is highly application dependent and it is difficult to evaluate it through
configurable options. Therefore, the overhead of breaking CoW pages was omitted in this experiment.

5.3 Ballooning vs. Host Swapping

In the following experiments, VM memory reclamation was enforced by changing each virtual machine’s
memory limit value from the default of unlimited, to values that are smaller than the configured virtual
machine memory size. Page sharing was turned off to isolate the performance impact of ballooning or
swapping. Since the host memory is much larger than the virtual machine memory size, the host free
memory is always in the high state. Hence, by default, ESX only uses ballooning to reclaim memory. Both
ballooning and memory compression were turned off to obtain the performance of using swapping only.
The ballooned and swapped memory sizes were also collected when the virtual machine ran steadily.

5.3.1 Linux Kernel Compile

Figure 10 presents the throughput of the kernel compile workload with different memory limits when using
ballooning or swapping. This experiment was contrived to use only ballooning or swapping, not both.
While this case will not often occur in production environments, it shows the performance penalty due to

5 This is an advanced setting, shown in Figure 5 on page 8.
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either technology on its own. The throughput is normalized to the case where virtual machine memory is
not reclaimed.

Figure 11. Performance of kernel compile when using the ballooning vs. the swapping
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By using ballooning, the kernel compile virtual machine only suffers from 3 percent throughput loss even
when the memory limit is as low as 128MB (1/4 of the configured virtual machine memory size). This is
because the kernel compile workload has very little memory reuse and most of the guest physical memory
is used as buffer caches for the kernel source files. With ballooning, the guest operating system reclaims
guest physical memory upon the balloon driver’s allocation request by dropping the buffer pages instead of
paging them out to the guest virtual swap device. Because dropped buffer pages are not reused frequently,
the performance impact of using ballooning is trivial.

However, with hypervisor swapping, the selected guest buffer pages are unnecessarily swapped out to the
host swap device and some guest kernel pages are swapped out occasionally, making the performance of
the virtual machine degrade when the memory limit decreases. When the memory limit is 128MB, the
throughput loss is about 34 percent in the swapping case. Balloon inflation is a better approach to memory
reclamation from a performance perspective.

Figure 11 illustrates that as the memory limit decreases, the ballooned and swapped memory sizes increase
almost linearly. There is a difference between the ballooned memory size and the swapped memory size. In
the ballooning cases, when virtual machine memory usage exceeds the specified limit, the balloon driver
cannot force the guest operating system to page out guest physical pages immediately unless the balloon
driver has used up most of the free guest physical memory, which puts the guest operating system under
memory pressure. In the swapping cases, however, as long as the virtual machine memory usage exceeds
the specified limit, the extra amount of pages will be swapped out immediately. Therefore, the ballooned
memory size is roughly equal to the virtual machine memory size minus the specified limit, which means
that the free physical memory is included. The swapped memory size is roughly equal to the virtual
machine host memory usage minus the specified limit. In the kernel compile virtual machine, since most of
the guest physical pages are used to buffer the workload files, the virtual machine’s effective host memory
usage is close to the virtual machine memory size. Hence, the swapped memory size is similar to the
ballooned memory size.
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5.3.2 Oracle/Swingbench

Figure 12 presents the throughput of an Oracle database tested by the Swingbench workload with different
memory limits when using ballooning vs. swapping. The throughput is normalized to the case where virtual
machine memory is not reclaimed.

Figure 12. Performance of Swingbench when using ballooning vs. swapping
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As shown in the kernel compile test, using ballooning barely impacts the throughput of the Swingbench
virtual machine until the memory limit decreases below 2048MB. This occurs when the guest operating
system starts to page out the physical pages that are heavily reused by the Oracle database.

In contrast to ballooning, any amount of swapping causes significant throughput penalty. The throughput
loss is already 17 percent when the memory limit is 3584MB. In hypervisor swapping, some guest buffer
pages are unnecessarily swapped out and some guest kernel or performance-critical database pages are also
unintentionally swapped out because of the random page selection policy. For the Swingbench virtual
machine, the virtual machine host memory usage is very close to the virtual machine memory size, so the
swapped memory size is very close to the ballooned memory size.

5.3.3 SPECjbb

Figure 13 presents the throughput of the SPECjbb workload with different memory limits when using
ballooning vs. swapping.

The throughput is normalized to the case where virtual machine memory is not reclaimed.
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Figure 13. Performance of SPECjbb when using ballooning vs. swapping
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From this figure, it is seen that when the virtual machine memory limit decreases beyond 2816MB, the
throughput of SPECjbb degrades significantly in both ballooning and swapping cases. When the memory
limit is reduced to 2048MB, the throughput losses are 89 percent and 96 percent for ballooning and
swapping respectively. Since the configured JVM heap size is 2.5GB, the actual virtual machine working set
size is around 2.5GB plus guest operating system memory usage (about 300MB). When the virtual machine
memory limit falls below 2816MB, the host memory cannot back the entire virtual machine’s working set, so
that virtual machine starts to suffer from guest-level paging in the ballooning cases or hypervisor swapping
in the swapping cases.

Since SPECjbb is an extremely memory intensive workload, its throughput is largely determined by the
virtual machine memory hit rate. In this instance, virtual machine memory hit rate is defined as the
percentage of guest memory accesses that result in host physical memory hits. A higher memory hit rate
means higher throughput for the SPECjbb workload. Since ballooning and host swapping similarly decrease
memory hit rate, both guest level paging and hypervisor swapping largely hurt SPECjbb performance.

Surprisingly, when the memory limit is 2506MB or 2304MB, swapping yields higher throughput than
ballooning does. This seems to be counterintuitive because hypervisor swapping typically causes a higher
performance penalty. One reasonable explanation is that the random page selection policy used in
hypervisor swapping largely favors the access patterns of the SPECjbb virtual machine. More specifically,
with ballooning, when the guest operating system (Linux in this case) pages out guest physical pages to
satisfy the balloon driver’s allocation request, it chooses the pages using an LRU-approximated® policy.
However, JVM often scans the allocated guest physical memory ( Java heap) for garbage collection
purpose. This behavior may fall into a well-known LRU pathological case in which the memory hit rate
drops dramatically even when the memory size is slightly smaller than the working set size. In contrast,

¢ LRU refers to “least recently used.” LRU is a caching policy that determines how pages are discarded when the cache is full and a
new page must be accepted into the cache. LRU specifies that the least recently used page is discarded.
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when using hypervisor swapping, the swapped physical pages are randomly selected by the hypervisor,
which makes the memory hit rate reduce more gradually as the memory limit decreases. That is why using
swapping achieves higher throughput when the memory limit is smaller than the virtual machine’s working
set size. However, when the memory limit drops to 2304MB, the virtual machine memory hit rate is
equivalently low in both swapping and ballooning cases. Using swapping starts to cause worse performance
compared to using ballooning. Note that the above two configurations where swapping outperforms
ballooning are rare pathological cases for ballooning performance. In most cases, using ballooning achieves
much better performance compared to using swapping.

Since the virtual machine’s working set size (~2.8GB) is much smaller than the configured virtual machine
memory size (4GB), the ballooned memory size is much higher than the swapped memory size.

5.3.4 Microsoft Exchange Server 2007

This section presents how ballooning and swapping impact the performance of an Exchange Server virtual
machine. Exchange Sever is a memory intensive workload that is optimized to use all the available physical
memory to cache the transactions for fewer disk I/Os.

The Exchange Server performance was measured using the average Remote Procedure Call (RPC) latency
during two hours of stable performance. The RPC latency gauges the server processing time for an RPC
from LoadGen (the client application that drives the Exchange server). Therefore, lower RPC latency means
better performance. The results are presented in Figure 14.

Figure 14. Average RPC latency of Exchange when using ballooning vs. using swapping
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Figure 14 (a), illustrates that when the memory limit decreases from 12GB to 3GB, the average RPC latency
is gradually increased from 4.6ms to 7.3ms with ballooning. However, as shown in Figure 14 (b), the RPC
latency is dramatically increased from 4.6ms to 143ms when solely swapping out 2GB host memory. When
the memory limit is reduced to 9GB, hypervisor swapping makes the RPC latency too high, which resulted
in the failure of the LoadGen application (due to timeout).

Overall, this figure confirms that using ballooning to reclaim memory is much more efficient than using
hypervisor swapping for the Exchange Server virtual machine.
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5.4 Memory Compression Performance

In this experiment, host memory overcommitment is enforced by reducing the host physical memory size
instead of setting the VM memory limit. The maximum compression cache size is fixed at 10% of configured
guest memory size.

5.4.1 SharePoint

SharePoint Sever is composed of five VMs with a total VM memory size of 32GB. The SQL server VM is
given a full 16GB memory reservation because any memory reclamation through ballooning or swapping
from this VM will make the SharePoint performance degrade significantly. No reservations are set for the
other four VMs. In addition, all the memory reclamation techniques are enabled as default. Figure 15
presents how memory compression helps improve the SharePoint performance when host memory size is
reduced. The performance result is normalized to the 36GB case where the host memory is undercomitted.

Figure 15. Throughput and Swap Read rate of SharePoint with different host memory sizes
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As shown in Figure 15, when host memory size is reduced from 36GB to 28GB, there is only 6%
performance degradation. This is because page sharing and ballooning efficiently reclaim most of VM
memory with little performance penalty. There are a few swapping activities when host memory is reduced
to 28GB and 26GB, but they do not impact performance much.

However, when host memory is reduced to 26GB, ballooning and page sharing are not enough to reclaim
host memory. ESX has to swap out guest pages from VMs. Without memory compression, the performance
loss is 95% because of the severe penalty of host swapping. Interestingly, by using memory compression, the
performance loss is brought back from 95% to 6%. Such a huge improvement is mainly due to the significant
reduction in the amount of swapped in pages. As we can see, applying memory compression reduces the
swap in (swap read) rate by around 85% since most of the missing pages can be found in the compression
caches.
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When host memory size is reduced to 24GB, even with memory compression, the throughput drops to 25%
of the throughput in the 36GB case because the amount of swapped in pages is considerably increased. By
checking the compression cache statistics, we found that compression caches of those VMs reached their
maximum limit size in this case.

5.4.2 Swingbench

In this experiment, 16 Swingbench VMs were used to overcommit the host memory and none of the VMs
had any memory reservation. The total VM configured memory size was 80GB. Figure 16 shows the
normalized overall throughput of Swingbench with memory compression versus without memory
compression when host memory size is reduced from 96GB to 50GB. The performance result is normalized
to the 96GB case. Each of the 16 VMs had the same copy of the database installed, which led to artificial
page sharing and made the impact of memory compression less obvious. So for benchmarking purposes, we
temporarily turned off page sharing in this experiment.

From Figurel6, we can see that when host memory is reduced from 96GB to 70GB, the performance loss of
Swingbench is < 5% since ballooning efficiently reclaims the guest pages from the VMs without causing
severe guest paging. However, when host memory is reduced to 60GB, the memory pressure is high enough
to make the host start to swap out guest pages. Using memory compression can easily recover 14% lost
throughput. Again, as shown in this figure, the improvement is mainly due to the significant reduction in
host page swap in (swap read) operations. For the same reason, memory compression can bring the
normalized throughput from 42% to 70% when host memory is only 50GB. In this case, even with memory
compression, there still were considerable swap in operations. Upon close observation, we found that
although the compression caches of those VMs were not full, there were quite a lot of swapped out pages
that failed on compression because they could not be compressed into half pages. Hence, memory
compression cannot completely eliminate host swapping.

Figure 16. Throughput and Swap Read rate of Swingbench with different host memory sizes
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Memory compression itself introduces some CPU overhead when performing compression or
decompression. In this experiment, we found that the physical CPU utilization is slightly increased by 1-2%
when memory compression is enabled.
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6. Best Practices

Based on the memory management concepts and performance evaluation results presented in the previous
sections, the following are some best practices for host and guest memory usage.

VMware, Inc

Do not disable page sharing or the balloon driver. As described, page sharing is a lightweight technique
which opportunistically reclaims redundant host memory with trivial performance impact. In the cases
where hosts are heavily overcommitted, using ballooning is generally more efficient and safer than
using hypervisor swapping, based on the results presented in Section 5.3. These two techniques are
enabled by default in ESX 4 and should not be disabled unless application testing shows that the
benefits of doing so clearly outweigh the costs.

Carefully specify memory limits and reservations. The virtual machine memory allocation target is
subject to the VM’s memory limit and reservation. If these two parameters are misconfigured, users
may observe ballooning or swapping even when the host has plenty of free memory. For example, a
virtual machine’s memory may be reclaimed when the specified limit is too small or when other virtual
machines reserve too much host memory, even though they may only use a small portion of the
reserved memory. If a performance-critical virtual machine needs a guaranteed memory allocation, the
reservation needs to be specified carefully because it may impact other virtual machines.

Host memory size should be larger than guest memory usage. For example, it is unwise to run a virtual
machine with a 2GB working set size in a host with only 1GB host memory. If this is the case, the
hypervisor has to reclaim the virtual machine’s active memory through ballooning or hypervisor
swapping, which will lead to potentially serious virtual machine performance degradation. Although it
is difficult to tell whether the host memory is large enough to hold all of the virtual machines” working
sets, the bottom line is that the host memory should not be excessively overcommitted making the
guests have to continuously page out guest physical memory.

Use shares to adjust relative priorities when memory is overcommitted. If the host’s memory is
overcommitted and the virtual machine’s allocated host memory is too small to achieve a reasonable
performance, adjust the virtual machine’s shares to escalate the relative priority of the virtual machine
so that the hypervisor will allocate more host memory for that virtual machine.

Set an appropriate virtual machine memory size. The virtual machine memory size should be slightly
larger than the average guest memory usage. The extra memory will accommodate workload spikes in
the virtual machine. Note that the guest operating system only recognizes the specified virtual machine
memory size. If the virtual machine memory size is too small, guest-level paging is inevitable, even
though the host may have plenty of free memory. If the virtual machine memory size is set to a very
large value, virtual machine performance will be fine, but more virtual machine memory means that
more overhead memory needs to be reserved for the virtual machine.
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